
www.manaraa.com

A unified framework for the development of

automated manufacturing systems supervisory

software for the pharmaceutical industry

HENRY Y. K. LAU and K. L. MAK

Abstract. The myth of software development be ing a `black
art’ has long gone . Today, m any software e nginee ring

methodologie s and Computer Aided Software Engineering
(CASE) tools are available to stream lin e the software

deve lopment proce ss. Th is paper introduce s a unified frame-
work to deve lop supervisory software for automated manu-

facturing systems. The framework co-ordinates the efforts put

forward by these methods and tools to reduce the cost of
software re -configuration, and to enhance the software’ s
quality. The framework addre sses the complete software

deve lopment life-cycle by using an obje ct-orien ted approach,

to capture and analyse the behavioural, structural and
informational aspects of a system. Traceability, completeness
and modularity are the principal emphases of the framework.

The framework also provide s well-defined milestones and

guide lines for practising software engineers who undertake
software proje cts for the developm ent of manufacturing

systems. The applicability of the framework is illustrated by
considering the deve lopment of the supervisory con trol

software for an automated chem istry workstation that is
commonly employed by the pharmaceutical industry.

1. Introduction

Software has be com e a m ajor part of today’ s

manufacturing syste ms controlled using computers.

Software deve lopm ent is the re fore an inevitable activity

for the construction and maintenance of such manu-

facturing systems, and the ability to re -configure the

software without compromising its quality is even m ore

important. Since the flexibility and e fficiency of any

m anufacturing syste m depen d on the supervisory

control software, a m ethodical software enginee ring

approach is e ssen tial. A practical autom ated manufac-

turing system often involve s the managem ent of a large

number of physical sub-system s and in ternal system

states, an d th e m akin g of re al-tim e de cision s in

re sponse to the occurrences of many possible eve nts.

Hence , the method adopted must be able to capture

the se salien t properties.

Software enginee ring methods such as those of

Yourdon (1989) , Ward Mellor, Booch (1994) , and

Booch and Rumbaugh (1995) have been adopted in

the de sign of flexible manufacturing system software

(Adiga 1993 , Briand and Esteban 1995 , Elia and Menga

1994) . In addition to the se methodologie s, Com puter

Aided Software Enginee ring (CASE) tools such as

System Arch itect (Popkin 1996) , Se le ct OMT (Se le ct

1996) , and Rational Rose (Booch and Rumbaugh 1995)

are used to automate the deve lopment process and to

sim ulate the de sign (Carrie 1988) . These tools have the

bene fit of savin g tim e in docum enting the software

proce ss and, to som e extent, of providing ideas to the

behaviour of the final system .

Most of the existing methods address differen t

phase s of software deve lopment with differen t em -

phase s. In particular, the O bject-Orie n te d Design

m ethod in troduced by Booch (1994) em phasises system

design , whereas the Use Case method by Jacobson

(1996) provid es a comprehensive approach to system

analysis and to capturing the system requirements.

Moreove r, be fore a particular software enginee ring

m ethod is adopted, it is important to know the type of

system s that the method is intended for.

Howe ve r, it is often not easy to categorise the

supe rvisory software of m anufacturing system s in to a

specific pedigree , e .g. some of these m anufacturing

system s software have to m eet real-time constraints and

support som e kind of in form ation database sim ulta-

neously. Hence , the deve lopment of the supe rvisory

software require s e fforts from a num ber of differen t

INT. J. CO MPUTER INTEGRATED MANUFACTURING, 1999, VO L. 12, NO . 3, 193 ± 210

0951-192X/ 99 $12.00 Ó 1999 Taylor & Francis Ltd

Authors: Henry Y. K. Lau and K. L. Mak, Departm ent of Industrial and

Manufacturing Systems Engine e ring, The University of Hong Kong, Pokfulam,

Hong Kong, PR Ch ina.

www.manaraa.com

me thodologie s. Som e CASE tools, such as System

Arch ite ct (Popkin 1996) , try to provid e software

enginee rs with a se t of comprehensive and gene ric

m e th ods with a firm th eore tical basis, wh ich , in

principle , is able to assist the deve lopment of most

system s software . None the le ss, it will be use ful to have a

fram e work to un ify som e of the se ve ry powe rfu l

me thods, and to concre tise their inte rpre tations with

clear milestone s and guide line s.

Indeed, the idea of using frameworks to assist the

analysis and design of com plex systems is not nove l.

Similar frameworks, such as the SEI CMM (Paulk 1995)

for deve loping semiconductor re lated software, have

been proposed and adopted in the e le ctronics industry.

Such m ethods have been prove d to enhance the quality

and productivity of com plex integrated device s by

form alising the key steps in the deve lopment and

production proce sses. Furthe rm ore , com mercial CASE

tool deve lope rs, such as Se le ct Software Tools and

Rational Software Corporation, have started to in tro-

duce som e unified software tools based on user-friendly

graph ical in te rface s (Booch and Rum baugh 1995,

Select 1996) .

The presen t study presen ts a unified fram ework that

addresses the ove rall software deve lopment life -cycle for

the supe rvisory control software of a typical manufac-

turing system . The objective s are to:

(a) bring out the salient feature s of the mainstream

object-orien ted techn ique s (Basili et al. 1996,

Dettmer 1995)

(b) un ify them across the stage s of software deve l-

opm ent

(c) ge ne ralise the framework for use in manufactur-

ing system software deve lopm ent

(d) illustrate how the fram ework can be used in

practice .

The first part of this pape r discusses and presents the

ph ilosophy and the major com ponents of the proposed

fram e work, wh ile th e se cond part illustrate s th e

application of the fram ework through a case study in

the pharmaceutical industry.

The principle of the unified framework is discussed

in section 2, wh ile section 3 de fine s the key components

of the fram ework in te rm s of measurable m ile stone s

and proce sses. Section 4 presen ts the two principal

activities associated with the fram ework, nam ely deve l-

opm e nt an d ve rification . Since th e fram ework is

de signed for the deve lopm ent of complex manufactur-

ing system software , a case study is undertaken in

section 5 to dem onstrate the app licability of the

fram ework. The deve lopment of the supe rvisory soft-

ware for a re -configurable autom ated chem istry work-

station (Corkan and Lindsey 1992) that is commonly

em ploye d in the pharm aceutical industry is conside red.

Such autom ated workstations are complex and inter-

active in nature , and som etimes involve specific real-

time responses and paralle l ope rations. In the case

study, the deve lopm ent of the software is illustrated

with the presen tation of various fram ework mode ls

wh ich specify the differen t stages of system analysis and

design .

2. An ob je ct-orien ted fram ework for so ftware d eve lop -

m ent

The philosophy of our framework is to adopt a

`m iddle -out’ approach in wh ich the de ve lopm en t

process will start top-down, until the key areas of the

activitie s are identified. The framework then conside rs

each area in de tail with a vie w to identifying key entities.

These key entities are gene ralised to form generic

building blocks. These buildin g blocks facilitate the

framework to work its way upwards and to see how the se

building blocks can be used to construct the ove rall

system to satisfy the original system requirements. The

framework then moves downwards to produce a better

approxim ation to the solution with more software

bu ilding blocks be ing ide ntifie d. Th is proce ss is

repeated at differen t leve ls of abstraction , until a se t

of software building blocks is identified, and the se

building blocks will implem ent the com ple te system

software. The un ified fram ework is characte rised more

specifically by:

· a number of we ll-de fined mile stone s by wh ich

the software life-cycle can be quantified

· two key proce sses: refinement and verification,

wh ich drive the ove rall software deve lopment

life -cycle

The four principal m ile stones of the unified fram ework

are : requirement, analysis, de sign, and im plem entation.

These m ile stones are actually m ode ls of the system

software with differen t leve ls of abstraction . In the

proposed fram ework, they are also used as platforms for

ve rification s.

Re fine ment is a proce ss wh ich drives the forward

path of the software deve lopm ent. In th is obje ct-

oriented framework, the step-wise refinement is pe r-

formed in the following areas: procedural, control and

data. The re finement proce ss transform s the system

from one m ilestone to another, starting from the

requirement down to im plem entation. O n the othe r

hand, verification is guided by anothe r se t of proce sses

wh ich assist system designers to m easure , assure and

H. Y. K. Lau and K. L. Mak194

www.manaraa.com

correct the refinem ent proce sses. The key idea of

ve rification is to show system atically that a refined

system de scription satisfies a more abstract system

description. In practice , verification can be pe rform ed

in different degrees of rigour. It can be a check of

consistency by using cross-re fe rences, or it can be fully

rigorous by using form al mathematics. The proposed

fram ework provide s a m ultitude of formalitie s in the

ve rification proce sses so that formality can be enhanced

where appropriate .

The fram ework is based mainly on a num ber of

existing obje cted-orien ted software methods. These

include methods used by Jacobson in dealing with early

requirem ent analysis, Booch for class re finem en t and

ve rification, Ward-Me llor for real-tim e specification of

system proce sses, and Hoare ’ s Comm unication Sequen-

tial Processes (CSP) (Hoare 1985) for the analysis of

paralle l p roce sse s beh aviour. Figure 1 sh ows th e

comple te un ified fram ework, indicating its m ile stone s

and proce sses.

In addition , the deve lopm ent proce sses proposed in

the framework prom ote software reuse , enhance trace -

ability, reduce upgrading costs, he lp to comply with

software standards, and, above all, ensure that the

software m atche s the customer’ s expectations. Further-

m ore , in the case of the de sign of safe ty-critical

software , the provision of form alism in system design

and implem entation wh ich complements conve ntional

analysis will enhance the re liability and correctne ss of

the software . In the following sections the m ile stone s

and the deve lopment proce sses of the unified fram e-

work are de scribed.

3. The m ilestone s

The unified software deve lopm ent framework in -

troduces principal mile stone s wh ich capture the key

in formation deve loped during the software life -cycle .

These mile stone s quantify the deve lopm ent proce ss,

and each milestone is a mode l of the system with

different leve ls of abstraction in three main aspects:

in formation , behaviour, and presen tation. Apart from

serving as focal points for the com munication of ideas

am ong system enginee rs and custom ers, these mile -

stone s are the basis for ve rification . In traditional

n om e nclatu re , th e se four m ile ston e s are te rm e d

re quirem ent, analysis, de sign , and im ple me ntation

m ode ls. An additional m ile stone, the te st m ode l, is

in troduced, wh ich is gene rated and evolve d throughout

the software deve lopm ent cycle , and is used to justify

the transform ation be tween succe ssive milestone s.

3.1. Requ irement model

Th is is a docum ent written in a natural language to

capture the requirements of the system in a com ple te,

ye t precise and unam biguous form at. The document is

produced on the basis of the functional requirem ent of

the supervisory control of an autom ated m anufacturing

system . Apart from system functions, non-functional

requirements will also be stated with in the requirem ent

m ode l. These may include system perform ance , quality

assurance standards, safe ty issue s, system software and

hardware platform s, maintenance crite rion , and other

e rgonomic factors. In all case s, the requirement is the

first mode l to be ge ne rated in the software deve lop-

m ent cycle , to pin down the principal goals.

3.2. Analysis model

The principle of the analysis m ode l is to structure

the requirem en t, so that an appropriate platform is

cre ated for subsequent system de signs. Sin ce the

requirement m ode l de fines, in a textual form at, what

the system will do from an operator’ s poin t of vie w, the

analysis mode l formalises the se de scriptions by using a

sim ple and easily understood notation . Indeed, the

analysis mode l deve loped describe s what the system

does, and it is going to be application-orien ted, and the

actual ope rating environment into which the system is

im pleme nted is not conside red. Hence , the m ain

Automated man ufacturing systems supervisory software 195

Figure 1. The key components of the Unified Framework.

www.manaraa.com

purpose of the analysis model is to present the problem,

and to provide a basis to solve the problem under ideal

conditions. As an analysis mode l is fully problem -

oriented, it can easily be deve loped from a functionality

vie wpoin t. It the re fore becomes possible to discuss the

mode l with the users of the system without using

implem entation jargons.

According to Jacobson (1996) , an analysis model

specifie s what a user or operator expects from the

capabilitie s of the system , and the model give s a

conceptual configuration of the system , consisting of

repre sen tations wh ich denote control, en tities and

in terfaces. With re ference to this m odel, a robust and

extensible structure can be deve loped in subsequent

syste m de ve lopm en ts. A com ple te an alysis m ode l

should the re fore contain sufficien t in formation , so that

the total functionality pre sen ted in the requirement

mode l is included. Since the m ode l is user-orien ted, the

analysis m odel is de signed to capture all the eve nts and

stimuli, as well as the ir corre sponding responses, wh ich

are the m ajor observable entities within a manufactur-

ing system . The notations used by Jacobson are adopted

to high ligh t the following aspects of m odelling the

system software at an abstract leve l, to docum ent the

in formation concise ly.

3.2.1. Use case. A use case is basically a gene ric

de scription of an entire transaction , or the activitie s

of a system conce rned. It specifie s the functionality

th at a system has to offer from an ope rator’ s

pe rspective , and de fine s what should take place

with in a system. A typical system analysis mode l m ay

consist of a colle ction of use case s through wh ich the

system organ isation and behaviour are complete ly

characterised. When a m anufacturing system interacts

with its environment, we in troduce the concept of an

`actor’ in to a use case . An actor is a mode l of an

entity that has some kind of dealings with or with in

the system . Actors are often used to represen t the

role s that an operator can play with in a system, and

use case s are used to represent what the operators

should be able to do with the system. Th is type of use

case representation, a use case actor repre sen tation , is

the refore a com ple te de scription of the in te ractions

between the system and its environment with in the

scope of a transaction.

3.2.2. Use case scenario. A scenario, on the othe r hand,

is an instance of a use case . It can be a specific function,

a reaction to a stimulus from the environment, an

in ternal behaviour, or a system characte ristic. For most

scenarios, further analysis can reve al a list of events

which lead to or make up the scenario. Under th is

c ircum stan ce , an e ve n t is a un ique and c le ar ly

obse rvab le situation . A typical e ve nt m ay be an

occurrence of external stimulus such as an arrival of a

part or a change in system status, e .g. com ple tion of an

assembly task. With in an analysis m ode l, the behaviours

of a system specified by the use case actor mode ls are

furthe r organ ised in to scenarios, with each scenario

de scribing one un ique aspect of the system. In th is way,

the system is progre ssively analyse d and grouped in to

manageable un its that are conducive to subsequent

system design .

3.2.3. Event list for scenarios. The analysis mode l is

the re fore seen as the first attem pt in system analysis and

design in wh ich the m ajor system components, beha-

viour and in form ational de tails are identified and

repre sen ted by refe rring to the observable eve nts.

These representations, i.e . use case actor and scenarios,

are pre se n te d in a com bin ation of te x tual an d

diagramm atic forms with in our fram ework in orde r to

enhance the com munication of ideas be tween system

de sign e rs and custom ers. Base d on the se clearly

comprehensible use case actor represen tations and

the corre sponding eve nt lists, a comm on language is

e stablished, so that any ambiguity, unce rtain ty, or

omission can be rem oved at th is ve ry early stage of

the deve lopment life -cycle .

3.3. Design model

The design m ode l re fines the analysis mode l to

facilitate subsequent implem entation with an actual

implem entation environm ent. The model distributes

the behaviour specified in the use case actor mode ls

am ong key entitie s, and specifie s the ir role s and

re spon sibilitie s, so that the syste m ’ s be haviour is

realised. In addition, a design mode l de fines explicitly

the in te rface s be tween the se entities as we ll as the

seman tics of the operations. These entities will becom e

the building blocks of the system , and will make up the

actual structure of the de sign m ode l. Despite the fact

that the se building blocks will late r be implem ented as

executable codes, their actual im plementation will be

abstracted in the de sign mode l. In fact, an entity will

often found to be implem ented by several classe s

during the im plementation proce ss.

The design mode l of the framework presents the se

entities as abstract classe s and re lationsh ips that re flect

the ir structural organ isation . The de live rable s in th is

model are :

· a list of system entities

· a list of abstract classes and the ir associations with

the identified entities

H. Y. K. Lau and K. L. Mak196

www.manaraa.com

· the h ie rarch ical organ isation of abstract classe s

and the re lationsh ips be tween them.

In the proposed framework, class diagram s (Booch

1994) are used to depict the existence of abstract

classe s and the ir re lationsh ips in the logical view of a

system . These diagram s are used by the design m ode l

to capture the structure of the classe s that form the

system ’ s architecture . A typical class diagram consists

of classe s and the ir basic re lationsh ips. According to

Booch , the se re lationships between classe s include

inhe ritance , `has’ , `using’ , and association. The first

three re lationsh ips can be used in physical terms to

denote gene ralisation/ specialisation , whole / part, and

clien t/ supplie r re lationsh ips, re spective ly. The associa-

tion re lationsh ip, be ing one of the m ost use ful

re lationships in specifying in te ractions am ong entities

with in a system , denotes a sem an tic connection

between two entities. Associations are often labe lled

with noun phrase s to de scribe the nature of the

re lationships. A class m ay have an association to itse lf,

and it is possible to have m ore than one association

between the same pair of classe s. The othe r three

re lationships can be see n as re finem ents of the

ge ne ral association relationsh ip. They are comm only

used in the design m odel to control abstraction

during system refinem ent, and to define specific

re lationships.

In the de sign mode l, a combination of these

re lationships is used to specify the structural and

in form ational aspects of th e system software . In

particular, the re lationsh ip of inhe ritance is consid-

ered to gene ralise / specialise classe s in to base and

derived classes. The class hierarchie s are form ed with

the key building blocks (the base classe s) clearly

identified under the se re lationsh ips. This allows the

ge ne ration of the implem entation mode l in wh ich

more specialised classe s can be formed by means of

the se base classe s. The abstract classe s identified

with in th is m odel are specified by the ir corre spond-

in g m e th ods an d attribute s. Th e m e th ods an d

attributes in a design m ode l are represen ted at a

high leve l of abstraction with the implementation

de tails n ot spe cifically de fined . In practice , the

abstraction of a de sign m odel varie s according to

the nature of the syste m conce rned, and it is often

difficult to define a rigid boundary. None the le ss, a

comple te de sign mode l must have sufficien t abstract

classe s de fined, so that all system scenarios specified

in the analysis m odel can be pe rform ed. In orde r to

ensure that th is criterion is satisfied , the obje ct

diagram analysis may be used, and the use of object

diagram s for verification will be de scribed in the te st

mode l and the ve rification proce ss.

3.4. Implemen tation model

Ge ne rally spe aking, an im plem en tation m ode l

consists of detail class specifications, a system proce ss

m ode l, and im plementation attributes.

The de tailed class de scriptions wh ich are re fined

from the de sign mode l are de fined in the im plementa-

tion mode l. Non-functional system requirements, such

as constraints, are introduced to specialise the abstract

classe s. The methods of a class are specified down to

pseudo-codes or work instructions and attributes are

presen ted as com ple te data structure s or individual

e lem ents with clear data type s. Within an im plementa-

tion m ode l, th e classe s wh ich are re spon sible to

pe rform special functions, such as the kinematics of a

m echan ism or a scheduling algorithm, will com bine

inputs from othe r discipline s to com plete the specifica-

tion of the supe rvisory controlle r. As such , classes and

data structure s laid down in an im plementation m odel

have strong associations with their physical counter-

parts. The results are the de tailed specifications of all

classe s and data structure s wh ich can be implem ented

dire ctly.

For supervisory control system s to be implem ented

on a distributed platform , such as an autom ated

m anufacturing system where m ulti-tasking and paralle -

lism are inhe rent feature s, a process m ode l is required.

In a process m odel, classe s are grouped in to proce sses

or tasks according to the nature of the se classe s, and to

othe r system attributes, such as th e pe rform ance

crite ria, the hardware platform , the operating system

and deve lopm ent environm ent. As regards comple te -

ne ss, all non-functional attributes that de fine the final

form of th e syste m software are included in the

implem entation mode l.

3.5. Test model

The test m odel is in tended to be used in the

verification proce ss to reassure not on ly the customers,

but also the system designe rs that the product satisfies

its in itial requirement. The content of the te st m ode l is

to be deve loped in con junction with the construction of

othe r system mode ls. The com ponents of this m odel

will be used at different stage s of the deve lopment

proce ss to ensure that the various m ile stone s ge ne rated

are corre ct. A typ ical te st m ode l consists of the

following:

3 .5.1. Object diagrams. O bje ct d iagram s re pre se n t

snapshots in time of an othe rwise transitory stream of

eve nts ove r certain configurations of obje cts. They

repre sen t the in te ractions or structural re lationsh ips

Automated man ufacturing systems supervisory software 197

www.manaraa.com

that occur among a given set of class instance s. Each

object diagram is used to represen t a system scenario

incorporating all th e e ve nts th at occur ove r the

comple te life -cycle of that scenario. The object dia-

gram s provide trace s of a system ’ s behaviour during the

deve lopm ent process. These trace s are the re fore used

to ve rify completeness and consistency of the system

design in the fram ework.

3.5.2. System process specifications. System proce ss speci-

fications are form al specifications in CSP notations

wh ich specify paralle lism and in teractions be tween

proce sses defined in the implem entation mode l. The

use of form al mathem atics to construct the se specifica-

tions allows a fully rigorous proof-of-corre ctness of

specific system behaviour and properties to be under-

taken. In m ost case s, it is impractical to specify fully a

comple te system in formal m athem atics. Neve rthe le ss,

the fram ework provide s a methodology to ve rify the

parts of a system formally, wh ich may be of critical

importance .

3.5.3. Software quality assurance test plan and test specifica-

tion . Software te st plan s and test specifications are

quality assurance documents which state what is to be

te sted and how things are to be te sted with in the scope

of system software . The software te st plan is usually

constructed with th e require m e nt m ode l sim ulta-

neously. It lays down all the principle function poin ts

of a system that are to be te sted. These function poin ts

correspond to the use case s identified in the require -

ment m odel. A software te st specification describes in

de tail how the final software should be tested again st

te st case s and data. A standard test specification should

include un it or component te st, in tegration test, system

test, and final acceptance te st. Historically, software te st

plan s and specifications are written to stream line the

proce ss of software comm issioning and hand-ove r, and

are often a prerequisite for the software deve lopment to

satisfy various com mercial standards, such as ISO9001.

None the less, they should be seen as im portan t pie ce s of

docum entation to system designe rs for the purpose of

ve rification.

4. The d eve lop m ent p roce sse s

Havin g de fin ed the m ile ston e s of the un ified

fram e work, th e othe r m ain com pon e nts are th e

deve lopm ent proce sses. There are two key proce sses:

mode l refinem ent and ve rification . Re fine ment is the

underlying proce ss which drive s the deve lopm ent life -

cycle . Ideally, it starts from the custom er requirem en t.

In the proposed our fram ework, howe ve r, the re fine -

ment proce ss takes the requ irem ent m ode l as its

starting poin t. Verification on the other hand, is the

proce ss by wh ich correctne ss and consistency are

ch e cke d afte r con duc tin g e ach re fin e m e n t ste p .

Although th is proce ss has traditionally been seen as

an auxiliary step by most software enginee ring methods,

we conside r it to be as im portant as re fine ment.

Th rough expe rien ce , the cost of m odification of

software due to e rrors in de sign in the im plementation

stage is many tim es h ighe r than that of corre ction in the

an alysis stage . It is the re fore vital to ensure that

consistency, comple tene ss and correctne ss are m ain -

tained during eve ry stage of the deve lopment. Hence ,

ve rification is a proce ss th at is as im portan t as

re finem en t.

4.1. Model refinement

The aim of the deve lopm ent process is to produce

mile stone s in a fully traceable and ve rifiable m anner.

The refinem ent proce ss takes the custom er require-

ment, and transform s it system atically in to software

products. It consists of a se t of heuristics to de scribe the

steps of refinement. The re finement proce ss starts from

the requirem ent mode l, and ends with the im plemen-

tation m ode l. The following three steps are identified.

4.1.1. System analysis. Th is is the transformation of a

requirement mode l to an analysis m ode l. Since the

system analysis aim s at ge nerating the analysis m ode l

consisting of use cases and scenarios, the main activitie s

involve a close study of the requirement mode l to

identify principal system behaviours, knowledge , inte r-

acting sub-system s, and to de fine the system boundary

that separate s the supervisory control system with the

re st of the syste m . The followin g system analysis

heuristics summarise the ove rall activities.

(A1) Construct a system context diagram which

de fine s the supe rvisory control system bound-

ary and identifies all exte rnal sub-system s,

including operators, external database s, othe r

hardware and sub-systems.

(A2) Ide ntify all prin cipal ac tors. These actors

include exte rnal stimuli and in trinsic system

behaviour and knowledge , such as control

functionality and database manage ment sys-

tems.

(A3) Construct use case . Each use case repre sen ts a

single system transaction , such as functionality,

behaviour and knowledge .

(A4) Identify a list of key scenarios from the use

cases and the requirement m odel.

H. Y. K. Lau and K. L. Mak198

www.manaraa.com

(A5) Associate actors to each system scenario.

(A6) Analyse each scenario so that the corre spond-

ing eve nt list is deduced.

4.1.2. System design . System design refine s the analysis

mode l to produce a design model. It aim s to identify

the primary entities of the system from the scenarios

de tailed in the analysis model. The following heuristics

de fine the logical steps of system classe s to identify.

(D1) Identify prim ary entities. From the system

scenarios, logical en tities can be identified

according to the ir corre spondence with physi-

cal obje cts. In addition , system actors can

always be m apped directly as primary entities.

(D2) Consolidate entities or obje cts. From these

e n titie s, abstract c lasse s are iden tified to

represen t the functionality of a system . Entities

are consolidated in to three m ain categories:

inte rface, in formational, and control en tities.

(D3) Form ation of classe s. As entitles or objects are

instance s of classe s, the concept of ge neral-

isation / specialisation, whole/ part, client/ sup-

plier, and association are used to identify the

n ece ssary system classe s. In addition , the

inform ation given in the system object dia-

grams that are docum ented in the te st m ode l

can be used to consolidate the defin ition of

the se abstract classes.

(D4) Class diagram repre sen tations. Re lationsh ips,

such as inhe ritance , aggregation , e tc., am ong

classe s are repre sen ted in the form of class

diagram s for easy com munications.

4.1 .3. Implemen tation . Imple m entation transform s a

design m odel in to an im plementation mode l. Here,

abstract system classe s are re fined to de tailed class

de scriptions with th e in troduction of constrain ts.

Adap tation is made to cate r for the implementation

environment, such as operating system s, languages,

arch itecture of the com puter system s, th ird party

software ,and hardware , etc. Each method defined in

a class is de tailed to include algorithms, logic descrip-

tions, e tc., and attributes are given in concre te data

types. The goal is to produce a de tailed system m odel to

ge ne rate software directly. The heuristics for system

implem entation are as follows.

(I1) Integrate system constraints with classe s. Ab-

strac t c lasse s are re fine d an d spe cialise d

according to system functionality and con-

straints. The methods and attributes in each

class are specified in de tailed pseudo-codes.

(I2) Group classe s in to ph ysic al proce sse s. By

following a similar concept as in system design,

classes can be classified gene rally under three

m ain cate gorie s of proce ss: in form ation al

en tity, control, and inte rface.

To expand on heuristic (I2) , an in terface process is one

having direct inte raction with the exte rnal environ-

m ent, e .g. a com munication device drive r of a part

handling robot. Classe s such as the serial comm unica-

tion classes and device driver classes can be grouped as

in terface proce sses. An in formational en tity process is

one wh ich implem ents in formation with in a system.

This may be a class wh ich encapsulate s data structure or

a re lational database that holds sequence s of assembly

operations. Control proce sses are proce sses wh ich

im plem e nt com putation , logic con trols an d state

tran sitions. It is comm on that the se proce sses are

coupled, and that they in teract with one anothe r in a

synchronous or asynchronous manner.

4.2. Model verification

Mode l ve rification is to ensure that the re finem ent

proce ss is correct in connection with com plete ne ss,

consistency and functionality. Although the leve l of

verification often depends on practical factors such as

time and cost, the proposed fram ework addresses the

full ve rification proce ss for the entire life -cycle of

software deve lopment. By the sam e token , it is nece ssary

to dem onstrate th at a complem entary ve rification

proce ss must exist in each re finement step. Table 1

sum marise s the ve rification proce sses adopted by the

framework.

4.2.1. Cross-reference. To establish the fact that an

analysis mode l specifies the requirement comple te ly,

the framework uses a m atrix to cross-refe rence function

poin ts identified in an analysis m ode l with th ose

d e scribe d in th e re qu ire m e n t m ode l. Sin ce th e

requirem ent mode l is usually written in a natural

language , a formal ve rification is often impractical. A

m atrix is the most direct and e fficien t way to m atch and

re late th e two m ode ls, to e nsure continu ity an d

consistency, and to avoid any omissions. As an exam ple ,

Automated man ufacturing systems supervisory software 199

Table 1. The corre sponding verification proce sses.

Refinement Verification

System analysis
System design

Implementation

Cross-reference
Object diagram

CSP modelling

www.manaraa.com

a typ ical cross-re fe re nce m atr ix m ay include the

following entries:

· syste m functional and non-functional specifica-

tion headings

· corre sponding section numbers from the re -

quirem ent mode l

· corre sponding analysis m odel headings

· corre sponding section num bers from the analysis

mode l

· corre sponding analysis m odel scenarios.

4.2 .2. Object diagram analysis. As described in the

syste m te st m ode l, obje c t d iag ram s are use d to

repre sen t the views of the obje ct structure of a system.

In the verification proce ss, obje ct diagram s can be used

to indicate the seman tics of scenarios via traces of

eve nts and operations. One of the key crite ria to accept

a de sign in terms of its comple tene ss is to demonstrate

by using object diagram s that all system scenarios can

be pe rformed by using the classes de fined in the de sign

mode l. Each scenario should correspond to an object

diagram to depict a subse t of system behaviours. With

the production of a com ple te set of obje ct diagram s to

repre sen t all system functionalities, the correctne ss of

the de sign mode l can be deduced. In addition, class

and object diagram s can provide the nece ssary in form a-

tion to a num ber of de sign metrics, including the total

number of classes reused, total number of stimuli sent,

and also th e n um be r, wid th an d h e ight of th e

inhe ritance h ierarch ie s to measure the quality of system

designs.

4.2.3. CSP modellin g. The fram ework uses the form al

mathematics CSP to expre ss and reason about con-

curren t proce sses. CSP offers a succinct mathematical

notation to de scribe proce sses and a way to control the

abstraction leve l of these de scriptions. Processes can be

structure d by using com bin ators for paralle l and

sequential com positions, com munication , e tc. O ve r

the ye ars, a num ber of practical case studie s have been

carried out by using CSP as a form al specification

method. These include the specification of aircraft

engine s (Jackson 1989) , traffic control system s (Lau

1990) , autonomous guided veh icle s (Stamper 1990)

and reliable ne twork protocols (Hindrey and Jarvis

1995) . Furthe r discussion of the seman tics of CSP m ay

be found in Hoare (1985) .

When a system design is implem ented, classe s are

grouped/ partitioned in to processes. In orde r to allow a

full understanding and prediction of the behaviour of

the se abstract im plementations, CSP is use d to for-

malise the se proce ss de scriptions. The form al proce ss

specifications allow mathematical reason ing such as

process alge bra to be pe rform ed, to ve rify propertie s

such as inte ractions, com munication , synchronisation,

an d deadlock fre edom . The de ductions from this

mathem atical reason ing are then checked again st the

de taile d e ve n t list for e ac h sce n ar io. A corre c t

implem entation m ust en tail the ability to pe rform all

system scenarios for the proce sses give n in an im ple -

mentation m ode l. As for each scenario, the sequence s

of eve nts deduced from the CSP ve rification should

match with those originally specified in the de sign

model.

5. De ve lop m ent o f pharm aceutical so ftware with the

un if ied f ram ework: a case study

5.1. Supervisory software for an au tomated chemistry work-

station

An au tom ated chemistry workstation (ACWS) is a

complex system wh ich is designed to maxim ise the

productivity of chemical reactions for the manufactur-

ing of drugs (Corkan and Lindsey 1992) . These

workstations have emerged to be one of the m ajor

autom ated systems (Chodosh et al. 1986 , Kram er and

Fuchs 1986 , Fujita et al. 1990) employed in the

pharm aceutical industry. Although the hardware and

software de signs for the workstation are com plemen-

tary, the focus of th is paper is on the deve lopment of

the software . In th is section , the un ifie d fram ework is

applied to the analysis and design of the supe rvisory

control software for an ACWS.

A typical automated chemistry workstation com -

prises a robotics liquid handling m an ipulator equipped

for solve nt add ition ; liquid sam pling and reage nt

transfer; an individually stirred m ulti-ve ssel variable

tem perature reaction station ; a dilution station ; a

reage nt storage un it; and an ultraviole t-visible absorp-

tion spectrometer for the chemical analysis. Typically,

the transfer of liquid sample s is accom plishe d via

electric syringe pum ps. These pum ps and the five sub-

systems are inte rfaced to a central controlling com puter

via RS-485 links and digital I/ O controls. Within th is

computer, a pie ce of supervisory software is executed to

co-ordinate all the equipm ent, to in terface with the

operators, and to m aintain a log of system status and

experimental de tails. The organ isation of the ACWS is

shown in the system context diagram (figure 2) .

As in any real system, de sign constraints also exist in

this case . One of the key de sign crite ria for the ACWS is

to ach ieve maxim um paralle lism . In addition , the

hardware for the supervisory software is a single board

computer running a real-tim e multi-tasking operating

system . Moreover, the implementation should take

H. Y. K. Lau and K. L. Mak200

www.manaraa.com

advan tage of the distributed hardware sub-system s with

em bedded proce ssors, to enable various mechan ical

ope rations to be pe rformed at the same tim e.

5.2. System analysis for the ACWS supervisory software

Assum e that the requirem ent mode l previously

pre pare d be twee n th e custom e rs an d the system

enginee rs is availab le , and that an extract from the

requirem ent m ode l is as follows.

`The automated chemistry workstation is to be operated
by trained chemists who shall ope rate the workstation

via a graphical use r interface . Expe rimental runs are
entered via the graph ical use r interface (GUI) , and

stored locally within the supe rvisory computer. Once

the instruction to perform the experiments has been
entered, the workstation shall schedule , manage , and
start the expe riments in an autonomous manner.

A typical expe riment involves the Liquid Handling

Robot transferring all require d reagents from the
Liquid Store to a specific reaction vesse l by using the
e lectric syringes. Some reagents may require dilution by

using the Dilution Station be fore be ing transferred to
the reaction vessel. O nce a reaction has started, the

Liquid Handling Robot samples the reactant pe riodi-

cally, and the system analyses the samples using the UV
Analyser. More than one experiment is scheduled at
any one time if possible . Experimental re sults are

updated on the computer terminal, and all the results

must be stored for further analysis. The system must be
able to log and report all occurrences of warnings and

errors.’

In vie w of th is re quirem ent, system analysis is

pe rform ed to produce the analysis m ode l for the ACWS

supervisory software . From the system context diagram

(figure 2) , principal actors are identified according to

heuristic (A1) . Table 2 pre sen ts the se actors.

With the se actors, the system use case diagram is

constructed and is illustrated in figure 3. From the

requirement mode l, a list of repre sen tative scenarios

is identified, and is give n in table 3. These scenarios

de scribe the system behaviours, characteristics, and

functions. It can be seen that, for a typical distributed

system , each active exte rnal sub-system which com -

m unicates with the supe rvisory controlle r in duplex is

assigned as a unique actor. O the r passive external

device s on ly acted on by the supervisory controlle r,

such as the Dilution Station and the Liquid Store , are

identified as `passive ’ entities. Apart from responding

to dem ands, the se exte rnal actors are the source s of

stimuli wh ich drive the system . In the case of the

ACWS, two key inte rnal feature s have to be m ode lled

at th is stage of the analysis. As the ACWS is an

autonomous system, system functions are also pe r-

formed without exte rnal stimuli. Hence , the Work-

station Manage r is in troduced to capture all the

in ternal behaviours, including the control of use r

in terface, scheduling, and the co-ordination of the

sub-system s. The othe r inte rnal actor which is of

equal im portance is the Database . Since one of the

requirements for the workstation is to be able to

re tain the experim ental de fin itions and to store and

re trieve all the re sults produced, it is nece ssary for

the ACWS to maintain and manage all the in form a-

tion. The in te rnal actor Database Manage r is an

abstract de scription of the system ’ s knowledge en-

capsulating both in form ational and operational de -

tails of the database .

Following the ide ntification of sce narios an d

actors, the associations be tween them are made .

These associations can be repre sen ted graph ically in

the form of use case actor scenario diagrams or

sim ply in a tabular form at. Table 4 give s th e

associations between actors and the ir corresponding

scenarios.

Finally, in the system analysis phase , system beha-

viour is extracted from the requirement mode l to

expand each scenario in to a list of eve nts or operations.

To illustrate the expan sion of the eve nt list, the Prepare

Experiment scenario will be analyse d.

The Prepare Experim ent scenario involve s the

preparation of a defined expe rim ent so that it is

ready for in itiation . The Liquid Handling Robot is

used to transfer reage nts from the Liquid Store to the

specific reaction vesse l in the reaction station . Som e

reagents are assumed to require dilution , and the

reaction profile is finally loaded in to the reactor

controlle r. The steps involve d in th is scenario are

de tailed in table 5.

Automated man ufacturing systems supervisory software 201

Figure 2. System con te xt diagram for the autom ated

chemistry workstation.

www.manaraa.com

5.3. System design : the formation of abstract ACWS classes

The goal of system design is to de fine all the

essen tial classes for the supervisory software of the

ACWS. By following rule s (D1) to (D4) , the scenarios of

the syste m pre se n te d in th e analysis m od e l are

exam ined, and the primary entities are identified.

According to rule (D1) , the entities that corre spond

to system actors and m ajor sub-systems are give n in

table 6. Table 7 illustrates the decom position of the

Prepare Experim ent scenario for the identification of

othe r system entities.

Havin g identified the primary entities for actors and

scenarios, a consolidated entity list is produced for the

system (table 8) . In this table , abstract classes that

correspond directly to the se entities are in troduced.

However, for actual im plementation , the software may

contain many more classe s than those introduced in

table 8. These extra classe s include utility classes,

containe r classe s, and third party library classe s wh ich

depend heavily on the chosen deve lopm ent platform

and the operating system .

In the ACWS supervisory software, all system entities

be ing identified can be categorised in to four key

functional blocks according to the ir behaviours, in -

formational details and responsibilitie s. These func-

tional blocks de fine the architecture of the software ,

and they are : the user in te rface , m anager, virtual device

laye r, and physical device laye r.

H. Y. K. Lau and K. L. Mak202

Table 2. Principal actors of the workstation.

External/
Actors internal Remarks

Chemist
Database Manager

Workstation Manager

Liquid Handling Robot

Reaction Station

UV Analyser

external
internal

internal

external

external

external

A typical operator.
In formational feature of the supervisory software.

Key functionality of the supervisory software, re sponsible for co-ordination of
hardware, scheduling expe riments, managing experimental runs and controls of

the user interface.
The robot manipulator responsible for transferring liquids such as reagents using

the e lectric syringe to various hardware module s; it constantly informs the
supervisory controller with information such as job progre ss, current syringe

locations and status.
The individually stirred multi-vesse l variable temperature reaction station.

The ultraviolet-visible absorption spectrometer for analysing the composition of
the reaction con tent.

Figure 3. System Use Case diagram.

Table 3. Major system scenarios.

No. Scenario

1

2
3

4
5

6
7

8
9

10

11
12

13
14

System start-up

System shutdown
Define experiment

Review experimental result
Produce expe rimental reports

Backup system configurations
Schedule experiments

Handle errors and warnings
Pe riodic system health check

Prepare experiment

Sample reactant for analysis
Monitor and con trol reaction profile

(time , temperature , amount of mixing)

Pe rform UV analysis
Generate analysis results

www.manaraa.com

With in system design, other prim ary classe s can be

identified from the consolidated entities list (table 8)

and the corre sponding obje ct diagram s in the te st

m ode l. These classe s are defined in terms of the ir

exte rnal inte rface and visibility. To com plete the system

design process, the re lationsh ips between classe s are

Automated man ufacturing systems supervisory software 203

Table 4. Association of actors and scenarios.

Actor’ s scenario Scenario name Description No.

Chemist scenarios System start-up
System shut down

Define expe riment

Review experiment
result

Handle start up of the ACWS.
Handle chemist’ s reque st to shut down the system.

Handle expe riment de finitions by a chemist via the system GUI.

Handles the display of se lected expe rimental result by a chemist
via the system GUI.

1
2

3

4

Liquid Handling

Robot scenarios

Prepare expe riment

Sample reactant for
analysis

Handles the transfer of reagents from the liquid store to the

reaction vessel. Reagents are transferred using the syringes and

reagents are diluted using the dilution stations if required by the
expe rimental de finitions.

Handles the transfer of reactant from the reaction vesse l to the
UV analyser. Reactant is transferred using the syringes by the

Liquid Handling Robot.

10

11

Reaction Station

scenario

Monitor and control

reaction profile

Handles control and mon itoring of e xpe rime ntal profiles

including temperature and experiment time

12

UV Analyser

scenarios

Pe rform UV analysis

Generate analysis
results

Handles analysis of reactant with the UV Analyser.

Handles post-proce ssing of the analysis re sult for system storage .

13

14

DB Manager
scenarios

Review experimental
result

Produc t experiment
reports

Handles the retrieval of experimental re sults from the system
database ready for examination from the GUI

Handles collection of experimental results, organisation and
proce ssing of results to produce expe riment reports.

4

5

WS Manager
scenarios

Backup system
configuration

Schedule expe riments

Handle errors and

warrnings
Pe riodic system health

check

Handles the pe riodic backup of the system configuration . Store
the current expe rimental profile .

Handles the scheduling and sequencing of differen t expe riments
such that more than one reaction and analysis can be placed at

the same time .
Handles the logging and reporting of system errors and

warnings.
Handles pe riodic health checks to all external devices connected

to the supervisory computer.

6

7

8

9

Table 5. The key steps for the Prepare Experiment scenario.

Step Key events Description

1

2

3

4

5

6

7

Get experiment detail

Activate Liquid Handling Robot

Get reagent from the Liquid Store

Dilute reagent

Transfer reagent to reaction vessel

Se t-up reaction profile

Update GUI

Obtain de finition of the experiment from the system database . The de finition of an

experiment is entered via the GUI by a chemist. It is assumed that the specified
expe riment has already been de fined.

Initialise the Liquid Handling Robot in preparation for liquid transfer. The robot
picks up a fresh syringe for every new reagent to be transferred.

The Liquid Handling Robot uses the syringe to aspirate the se lected reagent from
the liquid store . This step plus steps 4 and 5 are repeated for all reagents required for

the expe riment.
The Liquid Handling Robot transfers the reagent that requires dilution to the

dilution station for dilution. The dilution station will dilute the reagent to its
required concentration. If the reagent does not require dilution, this step will not be

performed.
The reagent (diluted or in its original concentration) is dispensed to the assigned

reaction vesse l.
The experiment profile is down loaded to the reaction vesse l controller.

The use r interface display is updated.

www.manaraa.com

iden tified from the scenarios and the list of consoli-

dated entities. The idea of ge ne ralisation/ specialisation

is app lie d to classe s wh ich be lon g to th e sam e

functional blocks. In the case of the ACWS, the physical

device laye r responsible for the in te rfacing be tween

sub-system s consists of a number of com munication

classe s wh ich can be organ ised into an inheritance

hierarchy. The ge neralised comm_port class is intro-

duced as a base class to build othe r m ore specialised

classe s, such as the LHR_Dev ice and Reactor_Dev ice

classe s. In addition, this comm_port class itse lf is a

containe r class for the two m ajor hardware dependent

classe s, i.e . the RS485_Port and IO_Port classe s. With in

the virtual device laye r, containe r classe s such as the

LHR class are in troduced from the idea of the whole /
part re lationship. These container classes encapsulate

the inform ational (e .g. LHR_Data) , functional (e .g.

LHR_Device) , and structural (e .g. Syringe_Dev ice) de tails

in orde r to enhance m odularity. All the se relationsh ips

can be documented concise ly using class diagram s.

Figure 4 shows a top leve l inheritance h ie rarchy of the

physical device laye r.

5.4. Implemen tation : a process model for the liqu id handling

sub-system

During implem entation , the actual software archi-

tecture is de fined by conside ring the constraints and

the physical details give n by the system attributes. These

constraints are in troduced to furthe r specialise classe s,

so that the classe s can be implem ented dire ctly by using

an object-orien ted language such as C++.

Havin g de tailed all the classe s, a final step in system

implem entation is to construct a proce ss m odel for the

ACWS. Th is m odel include s the partition or grouping

of classe s in to proce sses. In the case of the ACWS

software, a m ulti-tasking operating system is used, and

classe s are grouped in to tasks under similar groupings

as the four principal functional blocks: use r inte rface,

H. Y. K. Lau and K. L. Mak204

Table 6. En tities identified from the system use case .

En tities Description

GUI interface
Liquid Handling Robot Interface

(LHR Interface)
Reactor Interface

Analyser Interface

Database Manager (DB Manager)

Workstation Manager (WS Manager)

Liquid Store Interface (LS Interface)

Dilution Station Interface (DS Interface)

Syringe Interface

Identified from the `Chemist’ actor. Handles all chemist pre sentation and inputs.
Identified from the `Liquid Handling Robot’ actor. Handle s all interaction with

the external robot control system.
Identified from the `Reaction Station’ actor. Handles all interaction with the

external reaction vesse l controller.
Ide ntifie d from the `UV Analyse r’ actor. Han dles all in te rac tion and

communication with the UV Analyser.
Identified from the `Database Manager’ control entity. Man ipulates, manages and

stores all system data such as experiment de finitions, results and progre ss of

expe riments.
Identified from the `Workstation Manager’ control entity. Controls and manages
system ope ration including periodic events.

Identified from the `Liquid Store ’ sub-system entity. Handle s all controls of the

physical liquid store.
Identified from the `Dilution Station’ sub-system entity. Handle s all interactions

with the dilution station.
Identified from the `Syringe ’ sub-system entity. Handle s the actions of the e lectric

syringes, namely aspiration and dispensing of reagents.

Table 7. Entities identified from the Prepare Expe riment scenario.

En tities Identified in steps Details

DB Manager
LHR Interface

Syringe Interface

LS Interface
DS Interface
Reactor Interface

Reactor Details

GUI Interface

1
2, 3, 5

2, 4, 5

3
4
5

6

7

Handle s storage and retrieval of specific expe rimental data.
Handle s all interactions with the Liquid Handling Robot.

Handle s the ope ration of th e lectric syringe.

Handle s all controls to the Liquid Store.
Handle s all controls to the Dilution Store .
Handle s all interactions with the Reaction Vesse l controller.

Handle s storage of reaction profiles settings for each reaction vessels.

Handle s the presentation of system information to a chemist.

www.manaraa.com

manage r, virtual and physical device s. More specifically,

each specialised device class is assigned as an indepen-

dent task, whereas the system database and supervisory

control be longing to the manage r function block are

assigned as two differen t tasks. The user in terface , be ing

a self-contained un it, is assigned as anothe r indepen-

dent task. In figure 5, the process m odel of the ACWS

software also include s two other tasks, nam e ly, the Utility

and Database. The Utility task is introduced to stream line

the passing of data around the system. It implem ents

the Msg class and SysInfo class. These classe s contain a

number of gene ric m essage handling m ethods used by

othe r system classe s to re lay system -wide in form ation .

The Database task implem ents the system Database class

and other com mon data structure s. Here , the Database

class is prim arily re sponsible for the storage of expe ri-

m ental de tails.

5.5. Verification issues

The pharmaceutical industry is a high ly regulated

industry and has put in a concerted e ffort to define a

com puter system life -cycle in te rms of the validation

proce ss (Liscouski 1995) . The correct and prove n

operation of a computer controlled pharmace utical

syste m is th e re fore one of the prim e factors in

de te rm in ing the acceptance of such system. Various

guideline s, including the PMA’ s Validation Life Cycle

(PMA 1986) , wh ich de fine s th e ve rification ste ps

nece ssary for system deve lopment, are set up in the

industry to regulate and assure the quality of the se

com puter-based pharm aceutical systems and software.

When comparing the se guide line s with the proposed

framework with regard to system testing and ve rification

for software, the fram ework has indeed aligned with

the se guideline s in te rm s of the provision of a stage d

deve lopm ent and a built-in quality assuran ce pro-

gram me . With in the fram ework, the m ile stone s provide

Automated man ufacturing systems supervisory software 205

Table 8. Consolidated system entities.* This may consist of a hierarchy of classes which depend on operating system and
development environment.

Corresponding
Entities classes Description Functional block

GUI Interface
LHR Interface

Reactor Interface

Analyser In terface
LS Interface

DS Interface
Syringe Interface

RS485 Interface
I/ O Interface

LHR Details

Reactor Details

Analyser Details

LS Details

DS Details
Filing System

DB Manager

WS Manager

GUI_Class*
LHR_Device

Reactor_Device

Analyser_Device
LS_Device

DS_Device
Syringe_Device

RS485_Port
IO_Port

LHR_Data

Reactor_Data

Analyser_Data

LS_Data

DS_Data
File

DB_Manager

WS_Manager

Handle s all chemist inputs and pre sentation.
Handle s all in teraction with the LH Robot.

Handle s all in teractionrs with the Reaction Vesse l
controller.

Handle s all in teraction with the external.
Handle s all controls to the Liquid Store .

Handle s all controls to the Dilution Station.
Handle s the operations of the e lectric syringe.

Handle s all communication with a RS 485 port.
Handle s all control to the physical digital I/ O port.

Handle s storage and retrieval of ope rational data of the
LH Robot.

Handle s storage of reaction profiles for each reaction

vesse ls.
Handle s storage and retrieval of working data and result
of the UV Analyser.

Handle s storage of Liquid Store data.

Handle s the storage of Dilution Station data.
Handle s output to the ope rating system filing system
and maintains log files.

Handle s storage and retrieval of all expe rimental

in formation.
Handle s system control as well as containing, controlling

and managing the virtual device layer.

User interface
Physical Device Laye r

Physical Device Laye r

Physical Device Laye r
Physical Device Laye r

Physical Device Laye r
Physical Device Laye r

Physical Device Laye r
Physical Device Laye r

Virtual Device Laye r

Virtual Device Laye r

Virtual Device Laye r

Virtual Device Laye r

Virtual Device Laye r
Manager

Manager

Manager

Table 9. Association be tween scenario events and obje ct
diagram steps for the Prepare Experiment scenario.

Object diagram

Step Key events steps

1
2

3
4

5
6

7

Get experimental detail
Activate Liquid Handling Robot

Get reagent from the Liquid Store
Dilute reagent

Transfer reagent to reaction vessel
Se t-up reaction profile

Update GUI

1, 2, 3, 4,
5, 6, 7

8, 9, 10, 11
12, 13, 14, 15

16, 17, 18, 19, 20
21, 22, 23

24

www.manaraa.com

a means to m easure the progress of the deve lopm ent,

whe reas the test mode l deve loped along the entire

software deve lopment proce ss provide s an in tegrated

means of assuring the quality of the software produced.

These reinforced the applicability of the fram ework in

deve loping software for the pharm aceutical industry.

In th is section , the verification of the system analysis

and design is illustrated through object diagram analysis

and reason ing using the CSP specifications of the h igh

leve l system tasks de fined in the system proce ss model

(figure 5) . Figure 6 is the object diagram for the

Prepare Experim ent scenario. In th is figure, obje cts are

con struc te d usin g th e in stan ce s of th ose classe s

identified in the system design . By tracing through

the e ve nts de picte d in the obje ct d iagram , an d

match ing the se with the scenario steps defined in table

5, the classe s so identified are sufficient to pe rform the

entire Prepare Exp erim en t scenario (table 9) . By

em ploying th is principle , the com ple te system design

can be checked by constructing obje ct diagrams for all

system scenarios. In addition to ve rification , obje ct

diagrams can assist the identification of m ethods and

attributes for each class.

Finally, to verify the in te ractions be tween tasks, high

le ve l CSP specification s are constructe d, and the

reason ing techn ique s can be used. The propertie s that

this ve rification proce ss focuses on are paralle lism and

synchron isation between the co-ope rating tasks. Correct

function ing of the ove rall system depends on the way

the tasks com municate with one another. Here , we use

the sam e scenario, the Prepare Experim ent scenario

de scribed previously, and specify each relevant task

using CSP. All spe cified tasks are put in paralle l

ope ration in the CSP mode l to allow for maxim um

paralle lism which is one of the system design criteria.

These CSP processes are reduced by using proce ss

alge bra, and deductions are m ade in te rms of eve nt

sequence s and paralle lism . In th is pape r, the tasks are

H. Y. K. Lau and K. L. Mak206

Figure 4. Top leve l inheritance hierarchy of the ACWS physical device layer.

www.manaraa.com

specified at a h igh leve l for the purpose of illustration.

None the le ss, the re is no lim it on how much detail

system the de signe rs may in troduce in to a particular

CSP specification . Figure 7 presents the CSP specifica-

tions for each re levan t task and the ove rall system

specification , i.e . the ACWS process. The last equation

shows that the obse rvable eve nts: get_expt, get_rgt,

asp_rgt, dilu te, dsp_rgt, load_profile , and display match

the sequence of scenario steps defined in table 5.

6. Conclusion

The un ifie d framework presented in th is pape r

attem pts to introduce som e degre e of un iform ity, and

provide s a system atic approach to enginee r com plex

supervisory software for manufacturing system s. The

provision of mile stone s makes the deve lopment m ore

quan tifiable , and the refinem ent proce sses sugge sted a

num be r of con cre te he uristics to gu ide software

deve lopm ent. Ve rification , toge the r with the in form a-

tion defin ed in the te st mode l, allows each m ile stone to

be checked again st its predece ssor for correctne ss,

consistency, and com ple tene ss. Although the fram e-

work provide s a full ve rification path beginn ing from

system analysis to implem entation, it doe s not dictate

how far the ve rification proce ss should proceed. None -

the le ss, the framework provides a spectrum of ap-

proach es to address the task of ve rification in orde r to

serve the wide d ive rsity of m anufacturing system s.

System designe rs m ay decide to use on ly cross-refe r-

ence s for low risk systems, or go to the other extreme of

formal specification of eve ry individual proce ss in CSP

for supe rvisory software that controls critical ope rations.

In addition to these advantage s, the fram ework has a

firm object-orien ted basis in which modularity and

reusability are the inhe rited feature s. These feature s

facilitate flexible and easy system re -configurations due

to change s in requirem ents, which are com mon cases in

m odern autom ated m anufacturing systems.

Automated man ufacturing systems supervisory software 207

Figure 5. High proce ss mode l of the ACWS supervisory software.

www.manaraa.com

With regard to the deve lopm ent of supe rvisory

software for the pharmaceutical industry, it is shown in

the case study that the system mode ls ge ne rated in the

deve lopm ent provide clear, precise and easily under-

stood m eans for both engin eers and custom ers to work

with . In the context of ve rification , the fram ework

require s the te st m odel to be built in con junction with

the othe r system models, and for each step in system

deve lopm ent, a com plem entary verification step is to be

taken. This approach will enhance the conformance of

the software produced, and provide an avenue to prove

the correctne ss of the software with re spect to its original

requirem ent. With the se features in place , the fram e-

work has m ade it possible for manufacturing system

engineers to address positively some of the se issue s,

including quality assurance , correctne ss, and re liability

in the deve lopment of pharm aceutical software .

Indeed, the framework has been applied to deve lop

supervisory software for a num ber of complex manu-

facturing system s, and improvements can be noted in

quality, traceability, maintainability, and documenta-

tion. Each of the se software proje cts has a re lative ly low

number of in te rnal change requests, wh ich indicate s

that the number of e rrors m ade during the system

deve lopm ent has been reduced. In addition, the se

proje cts have succe ssfully passed through software

H. Y. K. Lau and K. L. Mak208

Figure 6. Object diagram for the Prepare Expe riment scenario.

www.manaraa.com

audits for standards such as the ISO 9001 and TickIT.

Howeve r, it is im portant to understand the ultimate aim

of the un ified framework, which is to addre ss the

analysis of the arch itecture of software , the organ isation

of m odule s, and also the comple tene ss and consistency

of the ove rall de sign . As such , it is not a tool for the

de sign of specific algorithm s, such as kinematics or

scheduling solutions, and the ultimate correctne ss of

the software produced depends on the correctne ss of its

original requirem en t specification . Furthermore, the

deve lopm ent, and thus application of a fully un ified

fram ework is ge ne rally considered to be at its in fancy

with in the com munity of manufacturing system soft-

ware busine sses. There is room for future improve ment

in num erous areas, including a un ified notation for

specification of m anufacturing system s, automated tools

to assist the tran sformation be tween each mode l and

ve rification, the introduction of formal mathematics to

system analysis and, the extension of the framework to a

system -wide de sign wh ich includes the specification of

system hardware .

Acknowled gm ents

The authors wish to thank the re fe ree s for the ir

con structive com m ents and sugge stion s about the

earlie r version of th is pape r.

Re fe rence s

ADIGA, S., 1993, Object-Oriented Software for Manufacturing Systems

(Chapman & Hall) .

BASILI, V. R., BRIAND, L. C., and MELO , W. L., 1996, How reuse
influences productivity in obje ct-oriented systems. Commu-

n ications of the ACM, 39, 104 ± 116.

Automated man ufacturing systems supervisory software 209

Figure 7. High leve l CSP specifications for the ACWS tasks with respect to the Prepare Expe riment scenario.

www.manaraa.com

BOO CH , G., 1994, Object-Oriented Analysis and Design with

Applications (The Benjamin/ Cummings Publish ing Com-
pany) .

BO OCH, G., and RUMBAUGH, J., 1995, Unified method for object-

orien ted development (document set, Version 0.8, Rational

Software Corporation) .

BRIAND, C., and ESTEBAN, P., 1995, An obje ct-orien ted and Pe tri
ne t based approach for real time con trol of FMSs.
Proceedings of 1995 INRIA/ IEEE Symposium on Emerging

Technologies and Factory Automation , vol. 1, pp. 115 ± 123.

CARRIE, A., 1988, Simulation of Manufacturing Systems (Chiche -
ster, UK: Wiley) .

CHODOSH, D. F, KAMHO LZ, K., LEVINSO N, S. H. and RHINE-SMITH, R.,

1986, Automated chemical synthesis. Part 4: Batch type

reactor automation and real-time software de sign . Journal of

Automatic Chemistry, 8, 106 ± 121.

CORKAN, A. L., and LINDSEY, J. S., 1992, Experiment manager
software for an automated chemistry workstation, including

a schedule r for paralle l expe rimentation. Chemonmetrics and

Intelligent Laboratory Systems: Laboratory Information Manage-

ment, Vol. 17 (Amsterdam: Elsevier Science Publishers B.V.) ,
pp. 47 ± 74.

DETTMER, R., 1995, A class act, the rise of obje ct-oriented
technology. IEE Review, Nov., 253 ± 256.

ELIA, C., and MENGA, G., 1994, O bject-oriented design of
flexible manufacturing systems. Computer control of Flexible

Manufacturing Systems: Research and Development, S. B. Joshi
and J. S. Smith (Eds) (Chapman & Hall) , pp. 315 ± 342.

FUJITA, M., USUI, S., KIYAMA, M., KAMBARA, H., MURAKAWA, K.,
SUZUKI, S., SAMBE, H. and TAKACHI, K., 1990, Chemical robot

for emzymatic reactions and extraction proce sses of DNA in
DNA sequence analysis. BioTechn iques, 9, 584 ± 591.

HINDREY, M. G. and JARVIS, S. A., 1995, Concurrent Systems: Formal

Development in CSP (McGraw-Hill) .

HOARE, C. A. R., 1985, Communicating Sequential Processes (UK:

Prentice Hall International) .
JACKSON, D. M., 1989, The specification of aircraft engine control

software using Timed CSP, Masters thesis, Programming
Research Group, University of Oxford, UK.

JACO BSO N, I., 1996, Object-Oriented Software Engineering, A Use Case

Driven Approach (Addison Wesley) .
KRAMER, G. W., and FUCHS, P. L., 1986, Robotics automation in

organic synthesis, Advances in Laboratory Automation Robotics,

vol 3 (Zymark & Hopkinton, MA) , pp. 361 ± 372.

LAU, H., 1990. The design of safety critical software using CSP.
Digest of IEE Colloquium in Safety Critical Software for Vehicle and

Traffic Control, 1990/ 031 8/ 1 ± 5.

LISCOUSKI, J., 1995, Laboratory and Scientific Computing: A Strategic

Approach (John Wiley & Sons) .
PAULK, M. C., 1995, The evolution of the SEI’ s Capability

Maturity Mode l for software. Software Process, Pilot Issue, 3 ±
17.

PMA’ S COMPUTER SYSTEM VALIDATION CO MMITTEE, 1986, Validation
concepts for compute r systems used in the manufacture of

drug products. Pharmaceutical Technology, 10, 24 ± 34.
POPKIN Software & Systems Ltd., 1995, CASE Tools for the Real

World, 1, (1) .
SELECT Software Tools plc., 1996, The SELECT Perspective,

Extending Rumbaugh’s OMT for Client/ Server Systems Develop-

ment (Select Software Tools plc, UK) .

STAMPER, R., 1990, The specification of AGV control software using

Timed CSP. Masters thesis, Programming Research Group,

University of Oxford, UK.
YO URDON, E., 1989, Modern Structured Analysis (Englewood

Cliffs, N.J.: Yourdon Pre ss) .

H. Y. K. Lau and K. L. Mak210

