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A unified framework for the development of
automated manufacturing systems supervisory
software for the pharmaceutical industry

HENRY Y. K. LAU and K. L. MAK

Abstract. The myth of software development being a ‘black
art’” has long gone. Today, many software engineering
methodologies and Computer Aided Software Engineering
(CASE) tools are available to streamline the software
development process. This paper introduces a unified frame-
work to develop supervisory software for automated manu-
facturing systems. The framework co-ordinates the efforts put
forward by these methods and tools to reduce the cost of
software re-configuration, and to enhance the software’s
quality. The framework addresses the complete software
development lifecycle by using an object-oriented approach,
to capture and analyse the behavioural, structural and
informational aspects of a system. Traceability, completeness
and modularity are the principal emphases of the framework.
The framework also provides well-defined milestones and
guidelines for practising software engineers who undertake
software projects for the development of manufacturing
systems. The applicability of the framework is illustrated by
considering the development of the supervisory control
software for an automated chemistry workstation that is
commonly employed by the pharmaceutical industry.

1. Introduction

Software has become a major part of today’s
manufacturing systems controlled using computers.
Software development is therefore an inevitable activity
for the construction and maintenance of such manu-
facturing systems, and the ability to re-configure the
software without compromising its quality is even more
important. Since the flexibility and efficiency of any
manufacturing system depend on the supervisory
control software, a methodical software engineering
approach is essential. A practical automated manufac-
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turing system often involves the management of a large
number of physical sub-systems and internal system
states, and the making of real-time decisions in
response to the occurrences of many possible events.
Hence, the method adopted must be able to capture
these salient properties.

Software engineering methods such as those of
Yourdon (1989), Ward Mellor, Booch (1994), and
Booch and Rumbaugh (1995) have been adopted in
the design of flexible manufacturing system software
(Adiga 1993, Briand and Esteban 1995, Elia and Menga
1994). In addition to these methodologies, Computer
Aided Software Engineering (CASE) tools such as
System Architect (Popkin 1996), Select OMT (Select
1996), and Rational Rose (Booch and Rumbaugh 1995)
are used to automate the development process and to
simulate the design (Carrie 1988). These tools have the
benefit of saving time in documenting the software
process and, to some extent, of providing ideas to the
behaviour of the final system.

Most of the existing methods address different
phases of software development with different em-
phases. In particular, the Object-Oriented Design
method introduced by Booch (1994) emphasises system
design, whereas the Use Case method by Jacobson
(1996) provides a comprehensive approach to system
analysis and to capturing the system requirements.
Moreover, before a particular software engineering
method is adopted, it is important to know the type of
systems that the method is intended for.

However, it is often not easy to categorise the
supervisory software of manufacturing systems into a
specific pedigree, e.g. some of these manufacturing
systems software have to meet real-time constraints and
support some kind of information database simulta-
neously. Hence, the development of the supervisory
software requires efforts from a number of different
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methodologies. Some CASE tools, such as System
Architect (Popkin 1996), try to provide software
engineers with a set of comprehensive and generic
methods with a firm theoretical basis, which, in
principle, is able to assist the development of most
systems software. Nonetheless, it will be useful to have a
framework to unify some of these very powerful
methods, and to concretise their interpretations with
clear milestones and guidelines.

Indeed, the idea of using frameworks to assist the
analysis and design of complex systems is not novel.
Similar frameworks, such as the SEI CMM (Paulk 1995)
for developing semiconductor related software, have
been proposed and adopted in the electronics industry.
Such methods have been proved to enhance the quality
and productivity of complex integrated devices by
formalising the key steps in the development and
production processes. Furthermore, commercial CASE
tool developers, such as Select Software Tools and
Rational Software Corporation, have started to intro-
duce some unified software tools based on user-friendly
graphical interfaces (Booch and Rumbaugh 1995,
Select 1996).

The present study presents a unified framework that
addresses the overall software development lifecycle for
the supervisory control software of a typical manufac-
turing system. The objectives are to:

(a) bring out the salient features of the mainstream
object-oriented techniques (Basili et al. 1996,
Dettmer 1995)

(b) unify them across the stages of software devel-
opment

(c) generalise the framework for use in manufactur-
ing system software development

(d) illustrate how the framework can be used in
practice.

The first part of this paper discusses and presents the
philosophy and the major components of the proposed
framework, while the second part illustrates the
application of the framework through a case study in
the pharmaceutical industry.

The principle of the unified framework is discussed
in section 2, while section 3 defines the key components
of the framework in terms of measurable milestones
and processes. Section 4 presents the two principal
activities associated with the framework, namely devel-
opment and verification. Since the framework is
designed for the development of complex manufactur-
ing system software, a case study is undertaken in
section 5 to demeonstrate the.;applicability of the
framework. The development of the ‘supervisory soft-
ware for a re-configurable automated chemistry work-

station (Corkan and Lindsey 1992) that is commonly
employed in the pharmaceutical industry is considered.
Such automated workstations are complex and inter-
active in nature, and sometimes involve specific real-
time responses and parallel operations. In the case
study, the development of the software is illustrated
with the presentation of various framework models
which specify the different stages of system analysis and
design.

2. An object-oriented framework for software develop-
ment

The philosophy of our framework is to adopt a
‘middle-out’ approach in which the development
process will start top-down, until the key areas of the
activities are identified. The framework then considers
each area in detail with a view to identifying key entities.
These key entities are generalised to form generic
building blocks. These building blocks facilitate the
framework to work its way upwards and to see how these
building blocks can be used to construct the overall
system to satisfy the original system requirements. The
framework then moves downwards to produce a better
approximation to the solution with more software
building blocks being identified. This process is
repeated at different levels of abstraction, until a set
of software building blocks is identified, and these
building blocks will implement the complete system
software. The unified framework is characterised more
specifically by:

e a number of well-defined milestones by which
the software lifecycle can be quantified

e two key processes: refinement and verification,
which drive the overall software development
lifecycle

The four principal milestones of the unified framework
are: requirement, analysis, design, and implementation.
These milestones are actually models of the system
software with different levels of abstraction. In the
proposed framework, they are also used as platforms for
verifications.

Refinement is a process which drives the forward
path of the software development. In this object-
oriented framework, the step-wise refinement is per-
formed in the following areas: procedural, control and
data. The refinement process transforms the system
from one milestone to another, starting from the
requirement down to implementation. On the other
hand, verification is guided by another set of processes
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correct the refinement processes. The key idea of
verification is to show systematically that a refined
system description satisfies a more abstract system
description. In practice, verification can be performed
in different degrees of rigour. It can be a check of
consistency by using cross-references, or it can be fully
rigorous by using formal mathematics. The proposed
framework provides a multitude of formalities in the
verification processes so that formality can be enhanced
where appropriate.

The framework is based mainly on a number of
existing objected-oriented software methods. These
include methods used by Jacobson in dealing with early
requirement analysis, Booch for class refinement and
verification, Ward-Mellor for real-time specification of
system processes, and Hoare’s Communication Sequen-
tial Processes (CSP) (Hoare 1985) for the analysis of
parallel processes behaviour. Figure 1 shows the
complete unified framework, indicating its milestones
and processes.

In addition, the development processes proposed in
the framework promote software reuse, enhance trace-
ability, reduce upgrading costs, help to comply with
software standards, and, above all, ensure that the
software matches the customer’s expectations. Further-
more, in the case of the design of safetycritical
software, the provision of formalism in system design
and implementation which complements conventional
analysis will enhance the reliability and correctness of
the software. In the following sections the milestones
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Figure 1. The key components of the Unified Framework.

and the development processes of the unified frame-
work are described.

3. The milestones

The unified software development framework in-
troduces principal milestones which capture the key
information developed during the software lifecycle.
These milestones quantify the development process,
and each milestone is a model of the system with
different levels of abstraction in three main aspects:
information, behaviour, and presentation. Apart from
serving as focal points for the communication of ideas
among system engineers and customers, these mile-
stones are the basis for verification. In traditional
nomenclature, these four milestones are termed
requirement, analysis, design, and implementation
models. An additional milestone, the test model, is
introduced, which is generated and evolved throughout
the software development cycle, and is used to justify
the transformation between successive milestones.

3.1. Requirement model

This is a document written in a natural language to
capture the requirements of the system in a complete,
yet precise and unambiguous format. The document is
produced on the basis of the functional requirement of
the supervisory control of an automated manufacturing
system. Apart from system functions, non-functional
requirements will also be stated within the requirement
model. These may include system performance, quality
assurance standards, safety issues, system software and
hardware platforms, maintenance criterion, and other
ergonomic factors. In all cases, the requirement is the
first model to be generated in the software develop-
ment cycle, to pin down the principal goals.

3.2. Analysis model

The principle of the analysis model is to structure
the requirement, so that an appropriate platform is
created for subsequent system designs. Since the
requirement model defines, in a textual format, what
the system will do from an operator’s point of view, the
analysis model formalises these descriptions by using a
simple and easily understood notation. Indeed, the
analysis model developed describes what the system
does, and it is going to be application-oriented, and the
actual operating environment into which the system is

implemented is not considered. Hengganthmamitaa.cc



196 H. Y. K Lau and K. L. Mak

purpose of the analysis model is to present the problem,
and to provide a basis to solve the problem under ideal
conditions. As an analysis model is fully problem-
oriented, it can easily be developed from a functionality
viewpoint. It therefore becomes possible to discuss the
model with the users of the system without using
implementation jargons.

According to Jacobson (1996), an analysis model
specifies what a user or operator expects from the
capabilities of the system, and the model gives a
conceptual configuration of the system, consisting of
representations which denote control, entities and
interfaces. With reference to this model, a robust and
extensible structure can be developed in subsequent
system developments. A complete analysis model
should therefore contain sufficient information, so that
the total functionality presented in the requirement
modelis included. Since the model is user-oriented, the
analysis model is designed to capture all the events and
stimuli, as well as their corresponding responses, which
are the major observable entities within a manufactur-
ing system. The notations used by Jacobson are adopted
to highlight the following aspects of modelling the
system software at an abstract level, to document the
information concisely.

3.2.1. Use case. A wuse case is basically a generic
description of an entire transaction, or the activities
of a system concerned. It specifies the functionality
that a system has to offer from an operator’s
perspective, and defines what should take place
within a system. A typical system analysis model may
consist of a collection of use cases through which the
system organisation and behaviour are completely
characterised. When a manufacturing system interacts
with its environment, we introduce the concept of an
‘actor’ into a use case. An actor is a model of an
entity that has some kind of dealings with or within
the system. Actors are often used to represent the
roles that an operator can play within a system, and
use cases are used to represent what the operators
should be able to do with the system. This type of use
case representation, a use case actor representation, is
therefore a complete description of the interactions
between the system and its environment within the
scope of a transaction.
3.2.2. Use case scenario. A scenario, on the other hand,
is an instance of a use case. It can be a specific function,
a reaction to a stimulus from the environment, an
internal behaviour, or a system characteristic. For most
scenarios, further. analysis can reveal a list| of events
which /lead to or make up the scenario. Under this
circumstance, an event is a unique and clearly

observable situation. A typical event may be an
occurrence of external stimulus such as an arrival of a
part or a change in system status, e.g. completion of an
assembly task. Within an analysis model, the behaviours
of a system specified by the use case actor models are
further organised into scenarios, with each scenario
describing one unique aspect of the system. In this way,
the system is progressively analysed and grouped into
manageable units that are conducive to subsequent
system design.

3.2.3. Event list for scenarios. The analysis model is
therefore seen as the first attempt in system analysis and
design in which the major system components, beha-
viour and informational details are identified and
represented by referring to the observable events.
These representations, i.e. use case actor and scenarios,
are presented in a combination of textual and
diagrammatic forms within our framework in order to
enhance the communication of ideas between system
designers and customers. Based on these clearly
comprehensible use case actor representations and
the corresponding event lists, a common language is
established, so that any ambiguity, uncertainty, or
omission can be removed at this very early stage of
the development lifecycle.

3.3. Design model

The design model refines the analysis model to
facilitate subsequent implementation with an actual
implementation environment. The model distributes
the behaviour specified in the use case actor models
among key entities, and specifies their roles and
responsibilities, so that the system’s behaviour is
realised. In addition, a design model defines explicitly
the interfaces between these entities as well as the
semantics of the operations. These entities will become
the building blocks of the system, and will make up the
actual structure of the design model. Despite the fact
that these building blocks will later be implemented as
executable codes, their actual implementation will be
abstracted in the design model. In fact, an entity will
often found to be implemented by several classes
during the implementation process.

The design model of the framework presents these
entities as abstract classes and relationships that reflect
their structural organisation. The deliverables in this
model are:

e a list of system entities
e alist of abstract classes and their associations with
the identified entities
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o the hierarchical organisation of abstract classes
and the relationships between them.

In the proposed framework, class diagrams (Booch
1994) are used to depict the existence of abstract
classes and their relationships in the logical view of a
system. These diagrams are used by the design model
to capture the structure of the classes that form the
system’s architecture. A typical class diagram consists
of classes and their basic relationships. According to
Booch, these relationships between classes include
inheritance, ‘has’, ‘using’, and association. The first
three relationships can be used in physical terms to
denote generalisation/ specialisation, whole/ part, and
client/ supplier relationships, respectively. The associa-
tion relationship, being one of the most useful
relationships in specifying interactions among entities
within a system, denotes a semantic connection
between two entities. Associations are often labelled
with noun phrases to describe the nature of the
relationships. A class may have an association to itself,
and it is possible to have more than one association
between the same pair of classes. The other three
relationships can be seen as refinements of the
general association relationship. They are commonly
used in the design model to control abstraction
during system refinement, and to define specific
relationships.

In the design model, a combination of these
relationships is used to specify the structural and
informational aspects of the system software. In
particular, the relationship of inheritance is consid-
ered to generalise/ specialise classes into base and
derived classes. The class hierarchies are formed with
the key building blocks (the base classes) clearly
identified under these relationships. This allows the
generation of the implementation model in which
more specialised classes can be formed by means of
these base classes. The abstract classes identified
within this model are specified by their correspond-
ing methods and attributes. The methods and
attributes in a design model are represented at a
high level of abstraction with the implementation
details not specifically defined. In practice, the
abstraction of a design model varies according to
the nature of the system concerned, and it is often
difficult to define a rigid boundary. Nonetheless, a
complete design model must have sufficient abstract
classes defined, so that all system scenarios specified
in the analysis model can be performed. In order to
ensure that this criterion is satisfied, the object
diagram analysis may be ‘used, and the [use of object
diagrams for verification will be described in the test
model and the verification process.

3.4. Implementation model

Generally speaking, an implementation model
consists of detail class specifications, a system process
model, and implementation attributes.

The detailed class descriptions which are refined
from the design model are defined in the implementa-
tion model. Non-functional system requirements, such
as constraints, are introduced to specialise the abstract
classes. The methods of a class are specified down to
pseudo~codes or work instructions and attributes are
presented as complete data structures or individual
elements with clear data types. Within an implementa-
tion model, the classes which are responsible to
perform special functions, such as the kinematics of a
mechanism or a scheduling algorithm, will combine
inputs from other disciplines to complete the specifica-
tion of the supervisory controller. As such, classes and
data structures laid down in an implementation model
have strong associations with their physical counter-
parts. The results are the detailed specifications of all
classes and data structures which can be implemented
directly.

For supervisory control systems to be implemented
on a distributed platform, such as an automated
manufacturing system where multi-tasking and paralle-
lism are inherent features, a process model is required.
In a process model, classes are grouped into processes
or tasks according to the nature of these classes, and to
other system attributes, such as the performance
criteria, the hardware platform, the operating system
and development environment. As regards complete-
ness, all non-functional attributes that define the final
form of the system software are included in the
implementation model.

3.5. Test model

The test model is intended to be wused in the
verification process to reassure not only the customers,
but also the system designers that the product satisfies
its initial requirement. The content of the test model is
to be developed in conjunction with the construction of
other system models. The components of this model
will be used at different stages of the development
process to ensure that the various milestones generated
are correct. A typical test model consists of the
following:

3.5.1. Object diagrams. Object diagrams represent
snapshots in time of an otherwise transitory stream of
events over certain configurations of objects. They
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that occur among a given set of class instances. Each
object diagram is used to represent a system scenario
incorporating all the events that occur over the
complete lifecycle of that scenario. The object dia-
grams provide traces of a system’s behaviour during the
development process. These traces are therefore used
to verify completeness and consistency of the system
design in the framework.

3.5.2. System process specifications. System process speci-
fications are formal specifications in CSP notations
which specify parallelism and interactions between
processes defined in the implementation model. The
use of formal mathematics to construct these specifica-
tions allows a fully rigorous proof-of-<correctness of
specific system behaviour and properties to be under-
taken. In most cases, it is impractical to specify fully a
complete system in formal mathematics. Nevertheless,
the framework provides a methodology to verify the
parts of a system formally, which may be of critical
importance.

3.5.3. Software quality assurance test plan and test specifica-
tion. Software test plans and test specifications are
quality assurance documents which state what is to be
tested and how things are to be tested within the scope
of system software. The software test plan is usually
constructed with the requirement model simulta-
neously. It lays down all the principle function points
of a system that are to be tested. These function points
correspond to the use cases identified in the require-
ment model. A software test specification describes in
detail how the final software should be tested against
test cases and data. A standard test specification should
include unit or component test, integration test, system
test, and final acceptance test. Historically, software test
plans and specifications are written to streamline the
process of software commissioning and hand-over, and
are often a prerequisite for the software development to
satisfy various commercial standards, such as ISO9001.
Nonetheless, they should be seen as important pieces of
documentation to system designers for the purpose of
verification.

4. The development processes

Having defined the milestones of the unified
framework, the other main components are the
development processes. There are two key processes:
model refinement and verification. Refinement is the
underlying process;which drives.the development life-
cycle. Ideally, it stapts from the custemer requirement.
In the proposed our framework, however, the refine-

ment process takes the requirement model as its
starting point. Verification on the other hand, is the
process by which correctness and consistency are
checked after conducting each refinement step.
Although this process has traditionally been seen as
an auxiliary step by most software engineering methods,
we consider it to be as important as refinement.
Through experience, the cost of modification of
software due to errors in design in the implementation
stage is many times higher than that of correction in the
analysis stage. It is therefore vital to ensure that
consistency, completeness and correctness are main-
tained during every stage of the development. Hence,
verification is a process that is as important as
refinement.

4.1. Model refinement

The aim of the development process is to produce
milestones in a fully traceable and verifiable manner.
The refinement process takes the customer require-
ment, and transforms it systematically into software
products. It consists of a set of heuristics to describe the
steps of refinement. The refinement process starts from
the requirement model, and ends with the implemen-
tation model. The following three steps are identified.
4.1.1. System analysis. This is the transformation of a
requirement model to an analysis model. Since the
system analysis aims at generating the analysis model
consisting of use cases and scenarios, the main activities
involve a close study of the requirement model to
identify principal system behaviours, knowledge, inter-
acting sub-systems, and to define the system boundary
that separates the supervisory control system with the
rest of the system. The following system analysis
heuristics summarise the overall activities.

(Al) Construct a system context diagram which
defines the supervisory control system bound-
ary and identifies all external sub-systems,
including operators, external databases, other
hardware and sub-systems.

(A2) Identify all principal actors. These actors
include external stimuli and intrinsic system
behaviour and knowledge, such as control
functionality and database management sys-
tems.

(A3) Construct use case. Each use case represents a
single system transaction, such as functionality,
behaviour and knowledge.

(A4) Identify a list of key scenarios from the use

cases and the requirement mod@ghyyw.manaraa.cc



Automated manufacturing systems supervisory software 199

(A5) Associate actors to each system scenario.
(A6) Analyse each scenario so that the correspond-
ing event list is deduced.

4.1.2. System design. System design refines the analysis
model to produce a design model. It aims to identify
the primary entities of the system from the scenarios
detailed in the analysis model. The following heuristics
define the logical steps of system classes to identify.

(D1) Identify primary entities. From the system
scenarios, logical entities can be identified
according to their correspondence with physi-
cal objects. In addition, system actors can
always be mapped directly as primary entities.

(D2) Consolidate entities or objects. From these
entities, abstract classes are identified to
represent the functionality of a system. Entities
are consolidated into three main categories:
interface, informational, and control entities.

(D3) Formation of classes. As entitles or objects are
instances of classes, the concept of general-
isation/ specialisation, whole/ part, client/ sup-
plier, and association are used to identify the
necessary system classes. In addition, the
information given in the system object dia-
grams that are documented in the test model
can be used to consolidate the definition of
these abstract classes.

(D4) Class diagram representations. Relationships,
such as inheritance, aggregation, etc., among
classes are represented in the form of class
diagrams for easy communications.

4.1.3. Implementation. Implementation transforms a
design model into an implementation model. Here,
abstract system classes are refined to detailed class
descriptions with the introduction of constraints.
Adaptation is made to cater for the implementation
environment, such as operating systems, languages,
architecture of the computer systems, third party
software ,and hardware, etc. Each method defined in
a class is detailed to include algorithms, logic descrip-
tions, etc., and attributes are given in concrete data
types. The goal is to produce a detailed system model to
generate software directly. The heuristics for system
implementation are as follows.

(I1) Integrate system constraints with classes. Ab-
stract classes are refined and specialised
according to system functionality and con-
straints. The: methods and' attributes in each
class are specified in detailed pseudo-codes.

(I2) Group classes into physical processes. By

following a similar concept as in system design,
classes can be classified generally under three
main categories of process: informational
entity, control, and interface.

To expand on heuristic (12), an interface processis one
having direct interaction with the external environ-
ment, e.g. a communication device driver of a part
handling robot. Classes such as the serial communica-
tion classes and device driver classes can be grouped as
interface processes. An informational entity process is
one which implements information within a system.
This may be a class which encapsulates data structure or
a relational database that holds sequences of assembly
operations. Control processes are processes which
implement computation, logic controls and state
transitions. It is common that these processes are
coupled, and that they interact with one another in a
synchronous or asynchronous manner.

4.2. Model verification

Model verification is to ensure that the refinement
process is correct in connection with completeness,
consistency and functionality. Although the level of
verification often depends on practical factors such as
time and cost, the proposed framework addresses the
full verification process for the entire lifecycle of
software development. By the same token, it is necessary
to demonstrate that a complementary verification
process must exist in each refinement step. Table 1
summarises the verification processes adopted by the
framework.

To establish the fact that an
analysis model specifies the requirement completely,

4.2.1. Cross-reference.

the framework uses a matrix to cross-reference function
points identified in an analysis model with those
described in the requirement model. Since the
requirement model is usually written in a natural
language, a formal verification is often impractical. A
matrix is the most direct and efficient way to match and
relate the two models, to ensure continuity and
consistency, and to avoid any omissions. As an example,

Table 1. The corresponding verification processes.

Refinement Verification

Cross-reference
Object diagram
CSP modelling

System analysis
System design
Implementation

WWVV.TTTalaraa. Cc



200 H. Y. K Lau and K. L. Mak

a typical cross-reference matrix may include the
following entries:

e system functional and non-functional specifica-
tion headings

e corresponding section numbers from the re-
quirement model

e corresponding analysis model headings

e corresponding section numbers from the analysis
model

e corresponding analysis model scenarios.

4.2.2. Object diagram analysis. As described in the
system test model, object diagrams are used to
represent the views of the object structure of a system.
In the verification process, object diagrams can be used
to indicate the semantics of scenarios via traces of
events and operations. One of the key criteria to accept
a design in terms of its completeness is to demonstrate
by using object diagrams that all system scenarios can
be performed by using the classes defined in the design
model. Each scenario should correspond to an object
diagram to depict a subset of system behaviours. With
the production of a complete set of object diagrams to
represent all system functionalities, the correctness of
the design model can be deduced. In addition, class
and object diagrams can provide the necessary informa-
tion to a number of design metrics, including the total
number of classes reused, total number of stimuli sent,
and also the number, width and height of the
inheritance hierarchies to measure the quality of system
designs.

4.2.3. CSP modelling. The framework uses the formal
mathematics CSP to express and reason about con-
current processes. CSP offers a succinct mathematical
notation to describe processes and a way to control the
abstraction level of these descriptions. Processes can be
structured by using combinators for parallel and
sequential compositions, communication, etc. Over
the years, a number of practical case studies have been
carried out by using CSP as a formal specification
method. These include the specification of aircraft
engines (Jackson 1989), traffic control systems (Lau
1990), autonomous guided vehicles (Stamper 1990)
and reliable network protocols (Hindrey and Jarvis
1995). Further discussion of the semantics of CSP may
be found in Hoare (1985).

When a system design is implemented, classes are
grouped/ partitioned into processes. In order to allow a
full understanding and prediction of the behaviour of
these abstract implementations,CSP is used to for-
malise these.proccss descriptions. The formal process
specifications allow mathematical reasoning such as

process algebra to be performed, to verify properties
such as interactions, communication, synchronisation,
and deadlock freedom. The deductions from this
mathematical reasoning are then checked against the
detailed event list for each scenario. A correct
implementation must entail the ability to perform all
system scenarios for the processes given in an imple-
mentation model. As for each scenario, the sequences
of events deduced from the CSP verification should
match with those originally specified in the design
model.

5. Development of pharmaceutical software with the
unified framework: a case study

5.1. Supervisory software for an automated chemistry work-
station

An automated chemistry workstation (ACWS) is a
complex system which is designed to maximise the
productivity of chemical reactions for the manufactur-
ing of drugs (Corkan and Lindsey 1992). These
workstations have emerged to be one of the major
automated systems (Chodosh ef al. 1986, Kramer and
Fuchs 1986, Fujita er al. 1990) employed in the
pharmaceutical industry. Although the hardware and
software designs for the workstation are complemen-
tary, the focus of this paper is on the development of
the software. In this section, the unified framework is
applied to the analysis and design of the supervisory
control software for an ACWS.

A typical automated chemistry workstation com-
prises a robotics liquid handling manipulator equipped
for solvent addition; liquid sampling and reagent
transfer; an individually stirred multi-vessel variable
temperature reaction station; a dilution station; a
reagent storage unit; and an ultraviolet-visible absorp-
tion spectrometer for the chemical analysis. Typically,
the transfer of liquid samples is accomplished via
electric syringe pumps. These pumps and the five sub-
systems are interfaced to a central controlling computer
via RS485 links and digital I/ O controls. Within this
computer, a piece of supervisory software is executed to
co-ordinate all the equipment, to interface with the
operators, and to maintain a log of system status and
experimental details. The organisation of the ACWS is
shown in the system context diagram (figure 2).

As in any real system, design constraints also exist in
this case. One of the key design criteria for the ACWS is
to achieve maximum parallelism. In addition, the
hardware for the supervisory software is a single board
computer running a real-time multi-tasking operating

system. Moreover, the implementationzahARutdafifitaa.ce
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Figure 2. System context diagram for the automated
chemistry workstation.

advantage of the distributed hardware sub-systems with
embedded processors, to enable various mechanical
operations to be performed at the same time.

5.2. System analysis for the ACWS supervisory software

Assume that the requirement model previously
prepared between the customers and the system
engineers is available, and that an extract from the
requirement model is as follows.

‘The automated chemistry workstation is to be operated
by trained chemists who shall operate the workstation
via a graphical user interface. Experimental runs are
entered via the graphical user interface (GUI), and
stored locally within the supervisory computer. Once
the instruction to perform the experiments has been
entered, the workstation shall schedule, manage, and
start the experiments in an autonomous manner.

A typical experiment involves the Liquid Handling
Robot transferring all required reagents from the
Liquid Store to a specific reaction vessel by using the
electric syringes. Some reagents may require dilution by
using the Dilution Station before being transferred to
the reaction vessel. Once a reaction has started, the
Liquid Handling Robot samples the reactant periodi-
cally, and the system analyses the samples using the UV
Analyser. More than one experiment is scheduled at
any one time if possible. Experimental results are
updated on the computer terminal, and all the results
must be stored for further analysis. The system must be
able to log and report all occurrences of warnings and
errors.’

In view of this requirement, system analysis is
performed to produce the analysis model for the ACWS
supervisory software. From the system context diagram

(figure 2), principal actors are identified according to
heuristic (Al). Table 2 presents these actors.

With these actors, the system use case diagram is
constructed and is illustrated in figure 3. From the
requirement model, a list of representative scenarios
is identified, and is given in table 3. These scenarios
describe the system behaviours, characteristics, and
functions. It can be seen that, for a typical distributed
system, each active external sub-system which com-
municates with the supervisory controller in duplex is
assigned as a unique actor. Other passive external
devices only acted on by the supervisory controller,
such as the Dilution Station and the Liquid Store, are
identified as ‘passive’ entities. Apart from responding
to demands, these external actors are the sources of
stimuli which drive the system. In the case of the
ACWS, two key internal features have to be modelled
at this stage of the analysis. As the ACWS is an
autonomous system, system functions are also per-
formed without external stimuli. Hence, the Work-
station Manager is introduced to capture all the
internal behaviours, including the control of user
interface, scheduling, and the co-ordination of the
sub-systems. The other internal actor which is of
equal importance is the Database. Since one of the
requirements for the workstation is to be able to
retain the experimental definitions and to store and
retrieve all the results produced, it is necessary for
the ACWS to maintain and manage all the informa-
tion. The internal actor Database Manager is an
abstract description of the system’s knowledge en-
capsulating both informational and operational de-
tails of the database.

Following the identification of scenarios and
actors, the associations between them are made.
These associations can be represented graphically in
the form of use case actor scenario diagrams or
simply in a tabular format. Table 4 gives the
associations between actors and their corresponding
scenarios.

Finally, in the system analysis phase, system beha-
viour is extracted from the requirement model to
expand each scenario into a list of events or operations.
To illustrate the expansion of the event list, the Prepare
Experiment scenario will be analysed.

The Prepare Experiment scenario involves the
preparation of a defined experiment so that it is
ready for initiation. The Liquid Handling Robot is
used to transfer reagents from the Liquid Store to the
specific reaction vessel in the reaction station. Some
reagents are assumed to require dilution, and the
reaction profile is finally loaded into the reactor
controller. The steps involved in this scenario are
detailed in table 5.
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Table 2. Principal actors of the workstation.

External/

Actors internal Remarks

Chemist external A typical operator.

Database Manager internal Informational feature of the supervisory software.

Workstation Manager internal Key functionality of the supervisory software, responsible for co-ordination of
hardware, scheduling experiments, managing experimental runs and controls of
the user interface.

Liquid Handling Robot external The robot manipulator responsible for transferring liquids such as reagents using
the electric syringe to various hardware modules; it constantly informs the
supervisory controller with information such as job progress, current syringe
locations and status.

Reaction Station external The individually stirred multi-vessel variable temperature reaction station.

UV Analyser external The ultraviolet-visible absorption spectrometer for analysing the composition of

the reaction content.

Chemist provides input via
the GUI

.

Reaction Station

‘4/'

Liquid Handling Robot UV Analyser

v

R
DB Manager /\

Automated Chemistry Workstation
Supervisory Control System (ACWSSC)

WS Manager ‘
\ 4

p
Syringe | Dilution Liquid
Lstation Store

These external sub-systems
are passive devices acted
upon by the system

Figure 3. System Use Case diagram.

5.3. System design: the formation of abstract ACWS classes

The goal of system design is to define all the
essential classes for the supervisory software of the
ACWS. By following rules (D1) to (D4), the scenarios of
the system presented in the analysis model are
examined, and the primary entities are identified.
According to rule (DIl), the entities that correspond
to system actors and major sub-systems are given in
table 6. Table 7 illustrates the decomposition of the
Prepare Experiment scenario for the identification of
other system entities.

Table 3. Major system scenarios.

No. Scenario
1 System start-up
2 System shutdown
3 Define experiment
4 Review experimental result
5 Produce experimental reports
6 Backup system configurations
7 Schedule experiments
8 Handle errors and warnings
9 Periodic system health check
10 Prepare experiment
11 Sample reactant for analysis
12 Monitor and control reaction profile
(time, temperature, amount of mixing)
13 Perform UV analysis
14 Generate analysis results

Having identified the primary entities for actors and
scenarios, a consolidated entity list is produced for the
system (table 8). In this table, abstract classes that
correspond directly to these entities are introduced.
However, for actual implementation, the software may
contain many more classes than those introduced in
table 8. These extra classes include utility classes,
container classes, and third party library classes which
depend heavily on the chosen development platform
and the operating system.

In the ACWS supervisory software, all system entities
being identified can be categorised into four key
functional blocks according to their behaviours, in-
formational details and responsibilities. These func-
tional blocks define the architecture of the software,
and they are: the user interface, manager, virtual device
layer, and physical device layer.

Wwww.manaraa.Cc
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Within system design, other primary classes can be model. These classes are defined in terms of their
identified from the consolidated entities list (table 8) external interface and visibility. To complete the system
and the corresponding object diagrams in the test design process, the relationships between classes are

Table 4. Association of actors and scenarios.

Actor’s scenario Scenario name Description No.

Chemist scenarios System start-up Handle start up of the ACWS. 1
System shut down Handle chemist’s request to shut down the system. 2
Define experiment Handle experiment definitions by a chemist via the system GUI. 3
Review experiment Handles the display of selected experimental result by a chemist 4
result via the system GUI.

Liquid Handling Prepare experiment Handles the transfer of reagents from the liquid store to the 10

Robot scenarios reaction vessel. Reagents are transferred using the syringes and

reagents are diluted using the dilution stations if required by the
experimental definitions.

Sample reactant for Handles the transfer of reactant from the reaction vessel to the 11
analysis UV analyser. Reactant is transferred using the syringes by the
Liquid Handling Robot.
Reaction Station Monitor and control  Handles control and monitoring of experimental profiles 12
scenario reaction profile including temperature and experiment time
UV Analyser Perform UV analysis  Handles analysis of reactant with the UV Analyser. 13
scenarios Generate analysis Handles post-processing of the analysis result for system storage. 14
results
DB Manager Review experimental Handles the retrieval of experimental results from the system 4
scenarios result database ready for examination from the GUI
Product experiment Handles collection of experimental results, organisation and 5
reports processing of results to produce experiment reports.
WS Manager Backup system Handles the periodic backup of the system configuration. Store 6
scenarios configuration the current experimental profile.
Schedule experiments Handles the scheduling and sequencing of different experiments 7

such that more than one reaction and analysis can be placed at
the same time.

Handle errors and Handles the logging and reporting of system errors and 8
warrnings warnings.

Periodic system health Handles periodic health checks to all external devices connected 9
check to the supervisory computer.

Table 5. The key steps for the Prepare Experiment scenario.

Step Key events Description

1 Get experiment detail Obtain definition of the experiment from the system database. The definition of an
experiment is entered via the GUI by a chemist. It is assumed that the specified
experiment has already been defined.

2 Activate Liquid Handling Robot Initialise the Liquid Handling Robot in preparation for liquid transfer. The robot
picks up a fresh syringe for every new reagent to be transferred.
3 Get reagent from the Liquid Store The Liquid Handling Robot uses the syringe to aspirate the selected reagent from

the liquid store. This step plus steps 4 and 5 are repeated for all reagents required for
the experiment.

4 Dilute reagent The Liquid Handling Robot transfers the reagent that requires dilution to the
dilution station for dilution. The dilution station will dilute the reagent to its
required concentration. If the reagent does not require dilution, this step will not be

performed.

5 Transfer reagent to reaction vessel The reagent (diluted or in its original concentration) is dispensed to the assigned
reaction vessel.

6 Set-up reaction profile The experiment profile is down loaded to the reaction vessel controller.

y Update GUI The user interface display is updated.

WWWwW.maharaa.cCc
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Table 6. Entities identified from the system use case.

Entities

Description

GUI interface

Liquid Handling Robot Interface
(LHR Interface)

Reactor Interface

Identified from the ‘Chemist’ actor. Handles all chemist presentation and inputs.
Identified from the ‘Liquid Handling Robot’ actor. Handles all interaction with
the external robot control system.

Identified from the ‘Reaction Station’ actor. Handles all interaction with the

external reaction vessel controller.

Analyser Interface

Identified from the ‘UV Analyser’ actor. Handles all interaction and

communication with the UV Analyser.

Database Manager (DB Manager)

Identified from the ‘Database Manager’ control entity. Manipulates, manages and

stores all system data such as experiment definitions, results and progress of

experiments.
Workstation Manager (WS Manager)

Identified from the ‘Workstation Manager’ control entity. Controls and manages

system operation including periodic events.

Liquid Store Interface (LS Interface)

Identified from the ‘Liquid Store’ sub-system entity. Handles all controls of the

physical liquid store.

Dilution Station Interface (DS Interface)

Identified from the ‘Dilution Station’ sub-system entity. Handles all interactions

with the dilution station.

Syringe Interface

Identified from the ‘Syringe’ sub-system entity. Handles the actions of the electric

syringes, namely aspiration and dispensing of reagents.

Table 7. Entities identified from the Prepare Experiment scenario.

Entities Identified in steps Details

DB Manager 1 Handles storage and retrieval of specific experimental data.

LHR Interface 2,3,5 Handles all interactions with the Liquid Handling Robot.

Syringe Interface 2,4,5 Handles the operation of th electric syringe.

LS Interface 3 Handles all controls to the Liquid Store.

DS Interface 4 Handles all controls to the Dilution Store.

Reactor Interface 5 Handles all interactions with the Reaction Vessel controller.

Reactor Details 6 Handles storage of reaction profiles settings for each reaction vessels.
GUI Interface 7 Handles the presentation of system information to a chemist.

identified from the scenarios and the list of consoli-
dated entities. The idea of generalisation/ specialisation
is applied to classes which belong to the same
functional blocks. In the case of the ACWS, the physical
device layer responsible for the interfacing between
sub-systems consists of a number of communication
classes which can be organised into an inheritance
hierarchy. The generalised comm_port class is intro-
duced as a base class to build other more specialised
classes, such as the LHR_Device and Reactor_Device
classes. In addition, this comm_port class itself is a
container class for the two major hardware dependent
classes, i.e. the RS485_Port and IO_Port classes. Within
the virtual device layer, container classes such as the
LHR class are introduced from the idea of the whole/
part relationship. These container classes encapsulate
the informational (e.g. LHR_Data), functional (e.g.
LHR_Device), and structural (e.g..Syringe_Device) details
in order to enhance! modularity. Allithese relationships
can be documented concisely using class diagrams.

Figure 4 shows a top level inheritance hierarchy of the
physical device layer.

5.4. Implementation: a process model for the liquid handling
sub-system

During implementation, the actual software archi-
tecture is defined by considering the constraints and
the physical details given by the system attributes. These
constraints are introduced to further specialise classes,
so that the classes can be implemented directly by using
an object-oriented language such as C++.

Having detailed all the classes, a final step in system
implementation is to construct a process model for the
ACWS. This model includes the partition or grouping
of classes into processes. In the case of the ACWS
software, a multi-tasking operating system is used, and
classes are grouped into tasks under similar groupings

as the four principal functional blocks: WaAgANMS&AETEaa. CC
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Table 8. Consolidated system entities.* This may consist of a hierarchy of classes which depend on operating system and
development environment.
Corresponding
Entities classes Description Functional block
GUI Interface GUI_Class* Handles all chemist inputs and presentation. User interface
LHR Interface LHR_Device Handles all interaction with the LH Robot. Physical Device Layer

Reactor_Device Handles all interactionrs with the Reaction Vessel
controller.
Analyser_Device Handles all interaction with the external.

Reactor Interface Physical Device Layer

Analyser Interface Physical Device Layer

LS Interface LS_Device Handles all controls to the Liquid Store. Physical Device Layer
DS Interface DS_Device Handles all controls to the Dilution Station. Physical Device Layer
Syringe Interface Syringe_Device Handles the operations of the electric syringe. Physical Device Layer
RS485 Interface RS485_Port Handles all communication with a RS 485 port. Physical Device Layer
I/ O Interface 10_Port Handles all control to the physical digital I/ O port. Physical Device Layer
LHR Details LHR_Data Handles storage and retrieval of operational data of the Virtual Device Layer
LH Robot.
Reactor Details Reactor_Data Handles storage of reaction profiles for each reaction Virtual Device Layer
vessels.

Analyser Details Analyser_Data  Handles storage and retrieval of working data and result Virtual Device Layer

of the UV Analyser.

LS Details LS_Data Handles storage of Liquid Store data. Virtual Device Layer
DS Details DS_Data Handles the storage of Dilution Station data. Virtual Device Layer
Filing System File Handles output to the operating system filing system Manager
and maintains log files.
DB Manager DB_Manager Handles storage and retrieval of all experimental Manager
information.
WS Manager WS_Manager Handles system control as well as containing, controlling Manager
and managing the virtual device layer.
Table 9. Association between scenario events and object

The Database task implements the system Database class

diagram steps for the Prepare Experiment scenario.
£ P P P and other common data structures. Here, the Database

Object diagram class is primarily responsible for the storage of experi-

Step Key events steps mental details.
1  Get experimental detail 1, 2, 3,4,
2 Activate Liquid Handhn.g Robot 5,6,7 5.5. Verification issues
3 Get reagent from the Liquid Store 8,9, 10, 11
4 Dilute reagent 12, 13, 14, 15 . . . .
5 Transfer reagent to reaction vessel 16, 17, 18, 19, 20 The pharmaceutical industry is a highly regulated
6  Setup reaction profile 21, 22,23 industry and has put in a concerted effort to define a
7 Update GUI 24 computer system lifecycle in terms of the validation

manager, virtual and physical devices. More specifically,
each specialised device class is assigned as an indepen-
dent task, whereas the system database and supervisory
control belonging to the manager function block are
assigned as two different tasks. The user interface, being
a self-contained unit, is assigned as another indepen-
dent task. In figure 5, the process model of the ACWS
software also includes two other tasks, namely, the Utility
and Database. The Utility task is introduced to streamline
the passing of data around the system. It implements
the Msg class and Syslnfo class. These classes contain a
number of generic message handling methods used by
other system ' classes to, relay system=wide information.

process (Liscouski 1995). The correct and proven
operation of a computer controlled pharmaceutical
system is therefore one of the prime factors in
determining the acceptance of such system. Various
guidelines, including the PMA’s Validation Life Cycle
(PMA 1986), which defines the verification steps
necessary for system development, are set up in the
industry to regulate and assure the quality of these
computer-based pharmaceutical systems and software.
When comparing these guidelines with the proposed
framework with regard to system testing and verification
for software, the framework has indeed aligned with
these guidelines in terms of the provision of a staged
development and a builtdin quality assurance pro-

gramme. Within the framework, the milqgppnssirandeaa. cc
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Figure 4. Top level inheritance hierarchy of the ACWS physical device layer.

a means to measure the progress of the development,
whereas the test model developed along the entire
software development process provides an integrated
means of assuring the quality of the software produced.
These reinforced the applicability of the framework in
developing software for the pharmaceutical industry.
In this section, the verification of the system analysis
and design is illustrated through object diagram analysis
and reasoning using the CSP specifications of the high
level system tasks defined in the system process model
(figure 5). Figure 6 is the object diagram for the
Prepare Experiment scenario. In this figure, objects are
constructed using the instances of those classes
identified in the system design. By tracing through
the events depicted in the object diagram, and
matching these with the scenario steps defined in table
S, the classes so identified are sufficient to perform the
entine : Prepare Experiment scendrio (table 9). By
employing this principle, the complete system design

can be checked by constructing object diagrams for all
system scenarios. In addition to verification, object
diagrams can assist the identification of methods and
attributes for each class.

Finally, to verify the interactions between tasks, high
level CSP specifications are constructed, and the
reasoning techniques can be used. The properties that
this verification process focuses on are parallelism and
synchronisation between the co-operating tasks. Correct
functioning of the overall system depends on the way
the tasks communicate with one another. Here, we use
the same scenario, the Prepare Experiment scenario
described previously, and specify each relevant task
using CSP. All specified tasks are put in parallel
operation in the CSP model to allow for maximum
parallelism which is one of the system design criteria.
These CSP processes are reduced by using process
algebra, and deductions are made in terms of event

sequences and parallelism. In this papeairoy tRslefrataa. cc
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Figure 5.

specified at a high level for the purpose of illustration.
Nonetheless, there is no limit on how much detail
system the designers may introduce into a particular
CSP specification. Figure 7 presents the CSP specifica-
tions for each relevant task and the overall system
specification, i.e. the ACWS process. The last equation
shows that the observable events: get_expt, get_rgt,
asp_rgt, dilute, dsp_rgt, load_profile, and display match
the sequence of scenario steps defined in table 5.

6. Conclusion

The unified framework presented in this paper
attempts to introduce some degree of uniformity, and
provides a systematic approach to engineer complex
supervisory software for manufacturing systems. The
provision of milestones makes the development more
quantifiable;.and the refinement processes suggested a
number of concrete heuristics to guide software

Reactor Physical

- LHR_Device Class
. |- RS485_Port Class

DS Physical Device |'. | Syringe Physical

- Device
. |- Syringe_Device Clas
. |-10_Port Class '

- |- LHR_Device Class

- |- RS485_Port Class

High process model of the ACWS supervisory software.

development. Verification, together with the informa-
tion defined in the test model, allows each milestone to
be checked against its predecessor for correctness,
consistency, and completeness. Although the frame-
work provides a full verification path beginning from
system analysis to implementation, it does not dictate
how far the verification process should proceed. None-
theless, the framework provides a spectrum of ap-
proaches to address the task of verification in order to
serve the wide diversity of manufacturing systems.
System designers may decide to use only cross-refer-
ences for low risk systems, or go to the other extreme of
formal specification of every individual process in CSP
for supervisory software that controls critical operations.
In addition to these advantages, the framework has a
firm object-oriented basis in which modularity and
reusability are the inherited features. These features
facilitate flexible and easy system re-configurations due
to changesin requirements, which are common cases in

modern automated manufacturing systeigaw.manaraa.ce
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With regard to the development of supervisory
software for the pharmaceutical industry, it is shown in
the case study that the system models generated in the
development provide clear, precise and easily under-
stood means for both engineers and customers to work
with. In the context of wverification, the framework
requires the test model to be built in conjunction with
the other system models, and for each step in system
development, a complementary verification step is to be
taken. This approach will enhance the conformance of
the software produced, and provide an avenue to prove
the correctness of the software with respectto its original
requirement. With these features in place, the frame-

/' 4: Formatted expt. details

2: request expt. definition

SysData
(Database)

SRobot
(LHR Data)

7: Load robot data

8: Move robot to LS
10: Activate syringe
—>
12: Move robot to DS
13: Activate syringe
16; Activate syringe
18: Move robot to Reactor
19: Activate syringe

i 11: Aspirate reagent

14: Dispense reagent
17: Aspirate reagent
20: Dispense reagent

Syringe
(Syringe_Device

Object diagram for the Prepare Experiment scenario.

work has made it possible for manufacturing system
engineers to address positively some of these issues,
including quality assurance, correctness, and reliability
in the development of pharmaceutical software.
Indeed, the framework has been applied to develop
supervisory software for a number of complex manu-
facturing systems, and improvements can be noted in
quality, traceability, maintainability, and documenta-
tion. Each of these software projects has a relatively low
number of internal change requests, which indicates
that the number of errors made during the system
development has been reduced. In addition, these

projects have successfully passed threpghy sp¥arfataa.ce
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User_Interface = (get_ip | display) = User_Interface

Data_Manager = (get_expt | report ) = Data_Manager

Control_Manager = get_expt 2

(get_rgt 2 asp_rgt > dsp _rgt

| get_rgt = asp_rgt 2 dilute > dsp_rgt

| system) - load_profile 2 display = Control Manager

LHR Device = (move | asp_rgt | dsp_rgt | status) = LHR Device

Reactor_Device = (load_profile | control_expt | status) = Reactor Device

DS Device = dilute 2 DS Device
LS Device = get_rgt 2 LS Device

ACWS = (User_Interface || Control_Manager || Data_Manager || LHR Device ||
Reactor_Device || DS _Device || LS _Device)
ACWS = get_expt 2 (get_rgt = ((asp_rgt > dilute > dsp_rgt) | (asp_rgt > dsp_rgt)) 2>

load_profile =2 display - ACWS

where get_expt : get experimental details
get_rgt : request reagent
asp_rgt : aspirate reagent

dsp_rgt : dispense reagent

load profile : load reaction profile
display : update GUI

dilute : dilute reagent

Figure 7. High level CSP specifications for the ACWS tasks with respect to the Prepare Experiment scenario.

audits for standards such as the ISO 9001 and TickIT.
However, it isimportant to understand the ultimate aim
of the unified framework, which is to address the
analysis of the architecture of software, the organisation
of modules, and also the completeness and consistency
of the overall design. As such, it is not a tool for the
design of specific algorithms, such as kinematics or
scheduling solutions, and the ultimate correctness of
the software produced depends on the correctness of its
original requirement specification. Furthermore, the
development, and thus application of a fully unified
framework is generally considered to be at its infancy
within the community of manufacturing system soft-
ware businesses. There is room for future improvement
in numerous areas, including a unified notation for
specification of manufacturing systems, automated tools
to assist the transformation between each model and
verification, the introduction of formal mathematics to

system analysis and, the extension of the framework to a
system-wide design which includes the specification of
system hardware.
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